Extensions 1→N→G→Q→1 with N=C2×Dic5 and Q=S3

Direct product G=N×Q with N=C2×Dic5 and Q=S3
dρLabelID
C2×S3×Dic5120C2xS3xDic5240,142

Semidirect products G=N:Q with N=C2×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic5)⋊1S3 = D6⋊Dic5φ: S3/C3C2 ⊆ Out C2×Dic5120(C2xDic5):1S3240,27
(C2×Dic5)⋊2S3 = D304C4φ: S3/C3C2 ⊆ Out C2×Dic5120(C2xDic5):2S3240,28
(C2×Dic5)⋊3S3 = Dic3.D10φ: S3/C3C2 ⊆ Out C2×Dic51204(C2xDic5):3S3240,143
(C2×Dic5)⋊4S3 = C2×C5⋊D12φ: S3/C3C2 ⊆ Out C2×Dic5120(C2xDic5):4S3240,147
(C2×Dic5)⋊5S3 = C2×D30.C2φ: trivial image120(C2xDic5):5S3240,144

Non-split extensions G=N.Q with N=C2×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×Dic5).1S3 = C30.Q8φ: S3/C3C2 ⊆ Out C2×Dic5240(C2xDic5).1S3240,29
(C2×Dic5).2S3 = Dic155C4φ: S3/C3C2 ⊆ Out C2×Dic5240(C2xDic5).2S3240,30
(C2×Dic5).3S3 = C6.Dic10φ: S3/C3C2 ⊆ Out C2×Dic5240(C2xDic5).3S3240,31
(C2×Dic5).4S3 = C2×C15⋊Q8φ: S3/C3C2 ⊆ Out C2×Dic5240(C2xDic5).4S3240,148
(C2×Dic5).5S3 = C2×C15⋊C8φ: S3/C3C2 ⊆ Out C2×Dic5240(C2xDic5).5S3240,122
(C2×Dic5).6S3 = C158M4(2)φ: S3/C3C2 ⊆ Out C2×Dic51204(C2xDic5).6S3240,123
(C2×Dic5).7S3 = Dic3×Dic5φ: trivial image240(C2xDic5).7S3240,25

׿
×
𝔽