Extensions 1→N→G→Q→1 with N=D5×Dic3 and Q=C2

Direct product G=N×Q with N=D5×Dic3 and Q=C2

Semidirect products G=N:Q with N=D5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic3)⋊1C2 = D205S3φ: C2/C1C2 ⊆ Out D5×Dic31204-(D5xDic3):1C2240,126
(D5×Dic3)⋊2C2 = D20⋊S3φ: C2/C1C2 ⊆ Out D5×Dic31204(D5xDic3):2C2240,127
(D5×Dic3)⋊3C2 = Dic5.D6φ: C2/C1C2 ⊆ Out D5×Dic31204(D5xDic3):3C2240,140
(D5×Dic3)⋊4C2 = C30.C23φ: C2/C1C2 ⊆ Out D5×Dic31204-(D5xDic3):4C2240,141
(D5×Dic3)⋊5C2 = D5×C3⋊D4φ: C2/C1C2 ⊆ Out D5×Dic3604(D5xDic3):5C2240,149
(D5×Dic3)⋊6C2 = C4×S3×D5φ: trivial image604(D5xDic3):6C2240,135

Non-split extensions G=N.Q with N=D5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic3).1C2 = D5×Dic6φ: C2/C1C2 ⊆ Out D5×Dic31204-(D5xDic3).1C2240,125
(D5×Dic3).2C2 = Dic3×F5φ: C2/C1C2 ⊆ Out D5×Dic3608-(D5xDic3).2C2240,95
(D5×Dic3).3C2 = Dic3⋊F5φ: C2/C1C2 ⊆ Out D5×Dic3608-(D5xDic3).3C2240,97