direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D5×Dic3, C10.1D6, C6.1D10, D10.2S3, Dic15⋊2C2, C30.1C22, C3⋊3(C4×D5), C15⋊4(C2×C4), (C3×D5)⋊1C4, C2.1(S3×D5), C5⋊2(C2×Dic3), (C6×D5).1C2, (C5×Dic3)⋊1C2, SmallGroup(120,8)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — D5×Dic3 |
Generators and relations for D5×Dic3
G = < a,b,c,d | a5=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Character table of D5×Dic3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 15A | 15B | 20A | 20B | 20C | 20D | 30A | 30B | |
size | 1 | 1 | 5 | 5 | 2 | 3 | 3 | 15 | 15 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 1 | 1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 1 | -1 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | -1 | 1 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | 1+√5/2 | 1-√5/2 | complex lifted from C4×D5 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | 1-√5/2 | 1+√5/2 | complex lifted from C4×D5 |
ρ19 | 2 | -2 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | 1-√5/2 | 1+√5/2 | complex lifted from C4×D5 |
ρ20 | 2 | -2 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | 1+√5/2 | 1-√5/2 | complex lifted from C4×D5 |
ρ21 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2 | 0 | 0 | -1-√5 | -1+√5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ22 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2 | 0 | 0 | -1+√5 | -1-√5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ23 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2 | 0 | 0 | 1+√5 | 1-√5 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2 | 0 | 0 | 1-√5 | 1+√5 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | symplectic faithful, Schur index 2 |
(1 34 46 53 42)(2 35 47 54 37)(3 36 48 49 38)(4 31 43 50 39)(5 32 44 51 40)(6 33 45 52 41)(7 24 55 26 14)(8 19 56 27 15)(9 20 57 28 16)(10 21 58 29 17)(11 22 59 30 18)(12 23 60 25 13)
(1 42)(2 37)(3 38)(4 39)(5 40)(6 41)(7 26)(8 27)(9 28)(10 29)(11 30)(12 25)(19 56)(20 57)(21 58)(22 59)(23 60)(24 55)(31 50)(32 51)(33 52)(34 53)(35 54)(36 49)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)
G:=sub<Sym(60)| (1,34,46,53,42)(2,35,47,54,37)(3,36,48,49,38)(4,31,43,50,39)(5,32,44,51,40)(6,33,45,52,41)(7,24,55,26,14)(8,19,56,27,15)(9,20,57,28,16)(10,21,58,29,17)(11,22,59,30,18)(12,23,60,25,13), (1,42)(2,37)(3,38)(4,39)(5,40)(6,41)(7,26)(8,27)(9,28)(10,29)(11,30)(12,25)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(31,50)(32,51)(33,52)(34,53)(35,54)(36,49), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31)>;
G:=Group( (1,34,46,53,42)(2,35,47,54,37)(3,36,48,49,38)(4,31,43,50,39)(5,32,44,51,40)(6,33,45,52,41)(7,24,55,26,14)(8,19,56,27,15)(9,20,57,28,16)(10,21,58,29,17)(11,22,59,30,18)(12,23,60,25,13), (1,42)(2,37)(3,38)(4,39)(5,40)(6,41)(7,26)(8,27)(9,28)(10,29)(11,30)(12,25)(19,56)(20,57)(21,58)(22,59)(23,60)(24,55)(31,50)(32,51)(33,52)(34,53)(35,54)(36,49), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31) );
G=PermutationGroup([[(1,34,46,53,42),(2,35,47,54,37),(3,36,48,49,38),(4,31,43,50,39),(5,32,44,51,40),(6,33,45,52,41),(7,24,55,26,14),(8,19,56,27,15),(9,20,57,28,16),(10,21,58,29,17),(11,22,59,30,18),(12,23,60,25,13)], [(1,42),(2,37),(3,38),(4,39),(5,40),(6,41),(7,26),(8,27),(9,28),(10,29),(11,30),(12,25),(19,56),(20,57),(21,58),(22,59),(23,60),(24,55),(31,50),(32,51),(33,52),(34,53),(35,54),(36,49)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)]])
D5×Dic3 is a maximal subgroup of
Dic3⋊F5 D20⋊5S3 D20⋊S3 C4×S3×D5 Dic5.D6 C30.C23 D30.S3
D5×Dic3 is a maximal quotient of C20.32D6 D10⋊Dic3 C30.Q8 D30.S3
Matrix representation of D5×Dic3 ►in GL4(𝔽61) generated by
0 | 1 | 0 | 0 |
60 | 17 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 60 | 1 |
0 | 0 | 60 | 0 |
50 | 0 | 0 | 0 |
0 | 50 | 0 | 0 |
0 | 0 | 15 | 23 |
0 | 0 | 38 | 46 |
G:=sub<GL(4,GF(61))| [0,60,0,0,1,17,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[60,0,0,0,0,60,0,0,0,0,60,60,0,0,1,0],[50,0,0,0,0,50,0,0,0,0,15,38,0,0,23,46] >;
D5×Dic3 in GAP, Magma, Sage, TeX
D_5\times {\rm Dic}_3
% in TeX
G:=Group("D5xDic3");
// GroupNames label
G:=SmallGroup(120,8);
// by ID
G=gap.SmallGroup(120,8);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,26,168,2404]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D5×Dic3 in TeX
Character table of D5×Dic3 in TeX