metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D121, C121⋊C2, C11.D11, sometimes denoted D242 or Dih121 or Dih242, SmallGroup(242,1)
Series: Derived ►Chief ►Lower central ►Upper central
C121 — D121 |
Generators and relations for D121
G = < a,b | a121=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121)
(1 121)(2 120)(3 119)(4 118)(5 117)(6 116)(7 115)(8 114)(9 113)(10 112)(11 111)(12 110)(13 109)(14 108)(15 107)(16 106)(17 105)(18 104)(19 103)(20 102)(21 101)(22 100)(23 99)(24 98)(25 97)(26 96)(27 95)(28 94)(29 93)(30 92)(31 91)(32 90)(33 89)(34 88)(35 87)(36 86)(37 85)(38 84)(39 83)(40 82)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 72)(51 71)(52 70)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)
G:=sub<Sym(121)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121), (1,121)(2,120)(3,119)(4,118)(5,117)(6,116)(7,115)(8,114)(9,113)(10,112)(11,111)(12,110)(13,109)(14,108)(15,107)(16,106)(17,105)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,97)(26,96)(27,95)(28,94)(29,93)(30,92)(31,91)(32,90)(33,89)(34,88)(35,87)(36,86)(37,85)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121), (1,121)(2,120)(3,119)(4,118)(5,117)(6,116)(7,115)(8,114)(9,113)(10,112)(11,111)(12,110)(13,109)(14,108)(15,107)(16,106)(17,105)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,97)(26,96)(27,95)(28,94)(29,93)(30,92)(31,91)(32,90)(33,89)(34,88)(35,87)(36,86)(37,85)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121)], [(1,121),(2,120),(3,119),(4,118),(5,117),(6,116),(7,115),(8,114),(9,113),(10,112),(11,111),(12,110),(13,109),(14,108),(15,107),(16,106),(17,105),(18,104),(19,103),(20,102),(21,101),(22,100),(23,99),(24,98),(25,97),(26,96),(27,95),(28,94),(29,93),(30,92),(31,91),(32,90),(33,89),(34,88),(35,87),(36,86),(37,85),(38,84),(39,83),(40,82),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,72),(51,71),(52,70),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62)]])
D121 is a maximal quotient of Dic121
62 conjugacy classes
class | 1 | 2 | 11A | ··· | 11E | 121A | ··· | 121BC |
order | 1 | 2 | 11 | ··· | 11 | 121 | ··· | 121 |
size | 1 | 121 | 2 | ··· | 2 | 2 | ··· | 2 |
62 irreducible representations
dim | 1 | 1 | 2 | 2 |
type | + | + | + | + |
image | C1 | C2 | D11 | D121 |
kernel | D121 | C121 | C11 | C1 |
# reps | 1 | 1 | 5 | 55 |
Matrix representation of D121 ►in GL2(𝔽727) generated by
251 | 315 |
412 | 239 |
306 | 79 |
462 | 421 |
G:=sub<GL(2,GF(727))| [251,412,315,239],[306,462,79,421] >;
D121 in GAP, Magma, Sage, TeX
D_{121}
% in TeX
G:=Group("D121");
// GroupNames label
G:=SmallGroup(242,1);
// by ID
G=gap.SmallGroup(242,1);
# by ID
G:=PCGroup([3,-2,-11,-11,1441,70,1982]);
// Polycyclic
G:=Group<a,b|a^121=b^2=1,b*a*b=a^-1>;
// generators/relations
Export