Extensions 1→N→G→Q→1 with N=C2×C68 and Q=C2

Direct product G=N×Q with N=C2×C68 and Q=C2
dρLabelID
C22×C68272C2^2xC68272,46

Semidirect products G=N:Q with N=C2×C68 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C68)⋊1C2 = D34⋊C4φ: C2/C1C2 ⊆ Aut C2×C68136(C2xC68):1C2272,14
(C2×C68)⋊2C2 = C22⋊C4×C17φ: C2/C1C2 ⊆ Aut C2×C68136(C2xC68):2C2272,21
(C2×C68)⋊3C2 = C2×D68φ: C2/C1C2 ⊆ Aut C2×C68136(C2xC68):3C2272,38
(C2×C68)⋊4C2 = D685C2φ: C2/C1C2 ⊆ Aut C2×C681362(C2xC68):4C2272,39
(C2×C68)⋊5C2 = C2×C4×D17φ: C2/C1C2 ⊆ Aut C2×C68136(C2xC68):5C2272,37
(C2×C68)⋊6C2 = D4×C34φ: C2/C1C2 ⊆ Aut C2×C68136(C2xC68):6C2272,47
(C2×C68)⋊7C2 = C4○D4×C17φ: C2/C1C2 ⊆ Aut C2×C681362(C2xC68):7C2272,49

Non-split extensions G=N.Q with N=C2×C68 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C68).1C2 = C34.D4φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).1C2272,12
(C2×C68).2C2 = C4⋊C4×C17φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).2C2272,22
(C2×C68).3C2 = C683C4φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).3C2272,13
(C2×C68).4C2 = C2×Dic34φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).4C2272,36
(C2×C68).5C2 = C68.4C4φ: C2/C1C2 ⊆ Aut C2×C681362(C2xC68).5C2272,10
(C2×C68).6C2 = C2×C173C8φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).6C2272,9
(C2×C68).7C2 = C4×Dic17φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).7C2272,11
(C2×C68).8C2 = M4(2)×C17φ: C2/C1C2 ⊆ Aut C2×C681362(C2xC68).8C2272,24
(C2×C68).9C2 = Q8×C34φ: C2/C1C2 ⊆ Aut C2×C68272(C2xC68).9C2272,48

׿
×
𝔽