d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22×C68 | 272 | C2^2xC68 | 272,46 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C68)⋊1C2 = D34⋊C4 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | (C2xC68):1C2 | 272,14 | |
(C2×C68)⋊2C2 = C22⋊C4×C17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | (C2xC68):2C2 | 272,21 | |
(C2×C68)⋊3C2 = C2×D68 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | (C2xC68):3C2 | 272,38 | |
(C2×C68)⋊4C2 = D68⋊5C2 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | 2 | (C2xC68):4C2 | 272,39 |
(C2×C68)⋊5C2 = C2×C4×D17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | (C2xC68):5C2 | 272,37 | |
(C2×C68)⋊6C2 = D4×C34 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | (C2xC68):6C2 | 272,47 | |
(C2×C68)⋊7C2 = C4○D4×C17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | 2 | (C2xC68):7C2 | 272,49 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C68).1C2 = C34.D4 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).1C2 | 272,12 | |
(C2×C68).2C2 = C4⋊C4×C17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).2C2 | 272,22 | |
(C2×C68).3C2 = C68⋊3C4 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).3C2 | 272,13 | |
(C2×C68).4C2 = C2×Dic34 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).4C2 | 272,36 | |
(C2×C68).5C2 = C68.4C4 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | 2 | (C2xC68).5C2 | 272,10 |
(C2×C68).6C2 = C2×C17⋊3C8 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).6C2 | 272,9 | |
(C2×C68).7C2 = C4×Dic17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).7C2 | 272,11 | |
(C2×C68).8C2 = M4(2)×C17 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 136 | 2 | (C2xC68).8C2 | 272,24 |
(C2×C68).9C2 = Q8×C34 | φ: C2/C1 → C2 ⊆ Aut C2×C68 | 272 | (C2xC68).9C2 | 272,48 |