Copied to
clipboard

## G = C2×D68order 272 = 24·17

### Direct product of C2 and D68

Aliases: C2×D68, C42D34, C341D4, C682C22, D341C22, C34.3C23, C22.10D34, C171(C2×D4), (C2×C68)⋊3C2, (C2×C4)⋊2D17, (C22×D17)⋊1C2, C2.4(C22×D17), (C2×C34).10C22, SmallGroup(272,38)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C34 — C2×D68
 Chief series C1 — C17 — C34 — D34 — C22×D17 — C2×D68
 Lower central C17 — C34 — C2×D68
 Upper central C1 — C22 — C2×C4

Generators and relations for C2×D68
G = < a,b,c | a2=b68=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 502 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C2×D4, C17, D17, C34, C34, C68, D34, D34, C2×C34, D68, C2×C68, C22×D17, C2×D68
Quotients: C1, C2, C22, D4, C23, C2×D4, D17, D34, D68, C22×D17, C2×D68

Smallest permutation representation of C2×D68
On 136 points
Generators in S136
(1 112)(2 113)(3 114)(4 115)(5 116)(6 117)(7 118)(8 119)(9 120)(10 121)(11 122)(12 123)(13 124)(14 125)(15 126)(16 127)(17 128)(18 129)(19 130)(20 131)(21 132)(22 133)(23 134)(24 135)(25 136)(26 69)(27 70)(28 71)(29 72)(30 73)(31 74)(32 75)(33 76)(34 77)(35 78)(36 79)(37 80)(38 81)(39 82)(40 83)(41 84)(42 85)(43 86)(44 87)(45 88)(46 89)(47 90)(48 91)(49 92)(50 93)(51 94)(52 95)(53 96)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 50)(20 49)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(69 86)(70 85)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(87 136)(88 135)(89 134)(90 133)(91 132)(92 131)(93 130)(94 129)(95 128)(96 127)(97 126)(98 125)(99 124)(100 123)(101 122)(102 121)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)

G:=sub<Sym(136)| (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,121)(11,122)(12,123)(13,124)(14,125)(15,126)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112)>;

G:=Group( (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,121)(11,122)(12,123)(13,124)(14,125)(15,126)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,85)(43,86)(44,87)(45,88)(46,89)(47,90)(48,91)(49,92)(50,93)(51,94)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(87,136)(88,135)(89,134)(90,133)(91,132)(92,131)(93,130)(94,129)(95,128)(96,127)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112) );

G=PermutationGroup([[(1,112),(2,113),(3,114),(4,115),(5,116),(6,117),(7,118),(8,119),(9,120),(10,121),(11,122),(12,123),(13,124),(14,125),(15,126),(16,127),(17,128),(18,129),(19,130),(20,131),(21,132),(22,133),(23,134),(24,135),(25,136),(26,69),(27,70),(28,71),(29,72),(30,73),(31,74),(32,75),(33,76),(34,77),(35,78),(36,79),(37,80),(38,81),(39,82),(40,83),(41,84),(42,85),(43,86),(44,87),(45,88),(46,89),(47,90),(48,91),(49,92),(50,93),(51,94),(52,95),(53,96),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,50),(20,49),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(69,86),(70,85),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(87,136),(88,135),(89,134),(90,133),(91,132),(92,131),(93,130),(94,129),(95,128),(96,127),(97,126),(98,125),(99,124),(100,123),(101,122),(102,121),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112)]])

74 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 4A 4B 17A ··· 17H 34A ··· 34X 68A ··· 68AF order 1 2 2 2 2 2 2 2 4 4 17 ··· 17 34 ··· 34 68 ··· 68 size 1 1 1 1 34 34 34 34 2 2 2 ··· 2 2 ··· 2 2 ··· 2

74 irreducible representations

 dim 1 1 1 1 2 2 2 2 2 type + + + + + + + + + image C1 C2 C2 C2 D4 D17 D34 D34 D68 kernel C2×D68 D68 C2×C68 C22×D17 C34 C2×C4 C4 C22 C2 # reps 1 4 1 2 2 8 16 8 32

Matrix representation of C2×D68 in GL3(𝔽137) generated by

 136 0 0 0 136 0 0 0 136
,
 136 0 0 0 116 94 0 43 88
,
 1 0 0 0 116 94 0 109 21
G:=sub<GL(3,GF(137))| [136,0,0,0,136,0,0,0,136],[136,0,0,0,116,43,0,94,88],[1,0,0,0,116,109,0,94,21] >;

C2×D68 in GAP, Magma, Sage, TeX

C_2\times D_{68}
% in TeX

G:=Group("C2xD68");
// GroupNames label

G:=SmallGroup(272,38);
// by ID

G=gap.SmallGroup(272,38);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,182,42,6404]);
// Polycyclic

G:=Group<a,b,c|a^2=b^68=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽