Copied to
clipboard

G = M4(2)×C17order 272 = 24·17

Direct product of C17 and M4(2)

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: M4(2)×C17, C4.C68, C83C34, C1367C2, C68.7C4, C22.C68, C68.22C22, (C2×C68).8C2, C2.3(C2×C68), (C2×C4).2C34, (C2×C34).3C4, C4.6(C2×C34), C34.19(C2×C4), SmallGroup(272,24)

Series: Derived Chief Lower central Upper central

C1C2 — M4(2)×C17
C1C2C4C68C136 — M4(2)×C17
C1C2 — M4(2)×C17
C1C68 — M4(2)×C17

Generators and relations for M4(2)×C17
 G = < a,b,c | a17=b8=c2=1, ab=ba, ac=ca, cbc=b5 >

2C2
2C34

Smallest permutation representation of M4(2)×C17
On 136 points
Generators in S136
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 71 130 65 31 99 119 48)(2 72 131 66 32 100 103 49)(3 73 132 67 33 101 104 50)(4 74 133 68 34 102 105 51)(5 75 134 52 18 86 106 35)(6 76 135 53 19 87 107 36)(7 77 136 54 20 88 108 37)(8 78 120 55 21 89 109 38)(9 79 121 56 22 90 110 39)(10 80 122 57 23 91 111 40)(11 81 123 58 24 92 112 41)(12 82 124 59 25 93 113 42)(13 83 125 60 26 94 114 43)(14 84 126 61 27 95 115 44)(15 85 127 62 28 96 116 45)(16 69 128 63 29 97 117 46)(17 70 129 64 30 98 118 47)
(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 86)(76 87)(77 88)(78 89)(79 90)(80 91)(81 92)(82 93)(83 94)(84 95)(85 96)

G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,71,130,65,31,99,119,48)(2,72,131,66,32,100,103,49)(3,73,132,67,33,101,104,50)(4,74,133,68,34,102,105,51)(5,75,134,52,18,86,106,35)(6,76,135,53,19,87,107,36)(7,77,136,54,20,88,108,37)(8,78,120,55,21,89,109,38)(9,79,121,56,22,90,110,39)(10,80,122,57,23,91,111,40)(11,81,123,58,24,92,112,41)(12,82,124,59,25,93,113,42)(13,83,125,60,26,94,114,43)(14,84,126,61,27,95,115,44)(15,85,127,62,28,96,116,45)(16,69,128,63,29,97,117,46)(17,70,129,64,30,98,118,47), (35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(85,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,71,130,65,31,99,119,48)(2,72,131,66,32,100,103,49)(3,73,132,67,33,101,104,50)(4,74,133,68,34,102,105,51)(5,75,134,52,18,86,106,35)(6,76,135,53,19,87,107,36)(7,77,136,54,20,88,108,37)(8,78,120,55,21,89,109,38)(9,79,121,56,22,90,110,39)(10,80,122,57,23,91,111,40)(11,81,123,58,24,92,112,41)(12,82,124,59,25,93,113,42)(13,83,125,60,26,94,114,43)(14,84,126,61,27,95,115,44)(15,85,127,62,28,96,116,45)(16,69,128,63,29,97,117,46)(17,70,129,64,30,98,118,47), (35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91)(81,92)(82,93)(83,94)(84,95)(85,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,71,130,65,31,99,119,48),(2,72,131,66,32,100,103,49),(3,73,132,67,33,101,104,50),(4,74,133,68,34,102,105,51),(5,75,134,52,18,86,106,35),(6,76,135,53,19,87,107,36),(7,77,136,54,20,88,108,37),(8,78,120,55,21,89,109,38),(9,79,121,56,22,90,110,39),(10,80,122,57,23,91,111,40),(11,81,123,58,24,92,112,41),(12,82,124,59,25,93,113,42),(13,83,125,60,26,94,114,43),(14,84,126,61,27,95,115,44),(15,85,127,62,28,96,116,45),(16,69,128,63,29,97,117,46),(17,70,129,64,30,98,118,47)], [(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,86),(76,87),(77,88),(78,89),(79,90),(80,91),(81,92),(82,93),(83,94),(84,95),(85,96)]])

170 conjugacy classes

class 1 2A2B4A4B4C8A8B8C8D17A···17P34A···34P34Q···34AF68A···68AF68AG···68AV136A···136BL
order122444888817···1734···3434···3468···6868···68136···136
size11211222221···11···12···21···12···22···2

170 irreducible representations

dim111111111122
type+++
imageC1C2C2C4C4C17C34C34C68C68M4(2)M4(2)×C17
kernelM4(2)×C17C136C2×C68C68C2×C34M4(2)C8C2×C4C4C22C17C1
# reps121221632163232232

Matrix representation of M4(2)×C17 in GL2(𝔽137) generated by

340
034
,
687
63131
,
152
0136
G:=sub<GL(2,GF(137))| [34,0,0,34],[6,63,87,131],[1,0,52,136] >;

M4(2)×C17 in GAP, Magma, Sage, TeX

M_4(2)\times C_{17}
% in TeX

G:=Group("M4(2)xC17");
// GroupNames label

G:=SmallGroup(272,24);
// by ID

G=gap.SmallGroup(272,24);
# by ID

G:=PCGroup([5,-2,-2,-17,-2,-2,340,1381,58]);
// Polycyclic

G:=Group<a,b,c|a^17=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations

Export

Subgroup lattice of M4(2)×C17 in TeX

׿
×
𝔽