d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C3×C15 | 90 | S3xC3xC15 | 270,24 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C15)⋊1S3 = He3⋊D5 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 6+ | (C3xC15):1S3 | 270,14 |
(C3×C15)⋊2S3 = C32⋊D15 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 6 | (C3xC15):2S3 | 270,19 |
(C3×C15)⋊3S3 = C5×C32⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 6 | (C3xC15):3S3 | 270,10 |
(C3×C15)⋊4S3 = C5×He3⋊C2 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 3 | (C3xC15):4S3 | 270,17 |
(C3×C15)⋊5S3 = C33⋊D5 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 135 | (C3xC15):5S3 | 270,29 | |
(C3×C15)⋊6S3 = C3×C3⋊D15 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 90 | (C3xC15):6S3 | 270,27 | |
(C3×C15)⋊7S3 = C32×D15 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 90 | (C3xC15):7S3 | 270,25 | |
(C3×C15)⋊8S3 = C15×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 90 | (C3xC15):8S3 | 270,26 | |
(C3×C15)⋊9S3 = C5×C33⋊C2 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 135 | (C3xC15):9S3 | 270,28 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C15).1S3 = D45⋊C3 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 6+ | (C3xC15).1S3 | 270,15 |
(C3×C15).2S3 = C5×C9⋊C6 | φ: S3/C1 → S3 ⊆ Aut C3×C15 | 45 | 6 | (C3xC15).2S3 | 270,11 |
(C3×C15).3S3 = C3⋊D45 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 135 | (C3xC15).3S3 | 270,18 | |
(C3×C15).4S3 = C3×D45 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 90 | 2 | (C3xC15).4S3 | 270,12 |
(C3×C15).5S3 = C15×D9 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 90 | 2 | (C3xC15).5S3 | 270,8 |
(C3×C15).6S3 = C5×C9⋊S3 | φ: S3/C3 → C2 ⊆ Aut C3×C15 | 135 | (C3xC15).6S3 | 270,16 |