Extensions 1→N→G→Q→1 with N=C3×C15 and Q=S3

Direct product G=N×Q with N=C3×C15 and Q=S3
dρLabelID
S3×C3×C1590S3xC3xC15270,24

Semidirect products G=N:Q with N=C3×C15 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3×C15)⋊1S3 = He3⋊D5φ: S3/C1S3 ⊆ Aut C3×C15456+(C3xC15):1S3270,14
(C3×C15)⋊2S3 = C32⋊D15φ: S3/C1S3 ⊆ Aut C3×C15456(C3xC15):2S3270,19
(C3×C15)⋊3S3 = C5×C32⋊C6φ: S3/C1S3 ⊆ Aut C3×C15456(C3xC15):3S3270,10
(C3×C15)⋊4S3 = C5×He3⋊C2φ: S3/C1S3 ⊆ Aut C3×C15453(C3xC15):4S3270,17
(C3×C15)⋊5S3 = C33⋊D5φ: S3/C3C2 ⊆ Aut C3×C15135(C3xC15):5S3270,29
(C3×C15)⋊6S3 = C3×C3⋊D15φ: S3/C3C2 ⊆ Aut C3×C1590(C3xC15):6S3270,27
(C3×C15)⋊7S3 = C32×D15φ: S3/C3C2 ⊆ Aut C3×C1590(C3xC15):7S3270,25
(C3×C15)⋊8S3 = C15×C3⋊S3φ: S3/C3C2 ⊆ Aut C3×C1590(C3xC15):8S3270,26
(C3×C15)⋊9S3 = C5×C33⋊C2φ: S3/C3C2 ⊆ Aut C3×C15135(C3xC15):9S3270,28

Non-split extensions G=N.Q with N=C3×C15 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C3×C15).1S3 = D45⋊C3φ: S3/C1S3 ⊆ Aut C3×C15456+(C3xC15).1S3270,15
(C3×C15).2S3 = C5×C9⋊C6φ: S3/C1S3 ⊆ Aut C3×C15456(C3xC15).2S3270,11
(C3×C15).3S3 = C3⋊D45φ: S3/C3C2 ⊆ Aut C3×C15135(C3xC15).3S3270,18
(C3×C15).4S3 = C3×D45φ: S3/C3C2 ⊆ Aut C3×C15902(C3xC15).4S3270,12
(C3×C15).5S3 = C15×D9φ: S3/C3C2 ⊆ Aut C3×C15902(C3xC15).5S3270,8
(C3×C15).6S3 = C5×C9⋊S3φ: S3/C3C2 ⊆ Aut C3×C15135(C3xC15).6S3270,16

׿
×
𝔽