metacyclic, supersoluble, monomial
Aliases: D45⋊C3, C45⋊1C6, C32.D15, 3- 1+2⋊D5, C5⋊(C9⋊C6), C9⋊(C3×D5), C15.3(C3×S3), (C3×C15).1S3, C3.3(C3×D15), (C5×3- 1+2)⋊1C2, SmallGroup(270,15)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C15 — C45 — C5×3- 1+2 — D45⋊C3 |
C45 — D45⋊C3 |
Generators and relations for D45⋊C3
G = < a,b,c | a45=b2=c3=1, bab=a-1, cac-1=a31, bc=cb >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
(2 45)(3 44)(4 43)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)
(2 17 32)(3 33 18)(5 20 35)(6 36 21)(8 23 38)(9 39 24)(11 26 41)(12 42 27)(14 29 44)(15 45 30)
G:=sub<Sym(45)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24), (2,17,32)(3,33,18)(5,20,35)(6,36,21)(8,23,38)(9,39,24)(11,26,41)(12,42,27)(14,29,44)(15,45,30)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24), (2,17,32)(3,33,18)(5,20,35)(6,36,21)(8,23,38)(9,39,24)(11,26,41)(12,42,27)(14,29,44)(15,45,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)], [(2,45),(3,44),(4,43),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24)], [(2,17,32),(3,33,18),(5,20,35),(6,36,21),(8,23,38),(9,39,24),(11,26,41),(12,42,27),(14,29,44),(15,45,30)]])
32 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 5A | 5B | 6A | 6B | 9A | 9B | 9C | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 45A | ··· | 45L |
order | 1 | 2 | 3 | 3 | 3 | 5 | 5 | 6 | 6 | 9 | 9 | 9 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 45 | ··· | 45 |
size | 1 | 45 | 2 | 3 | 3 | 2 | 2 | 45 | 45 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | ··· | 6 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | D5 | C3×S3 | C3×D5 | D15 | C3×D15 | C9⋊C6 | D45⋊C3 |
kernel | D45⋊C3 | C5×3- 1+2 | D45 | C45 | C3×C15 | 3- 1+2 | C15 | C9 | C32 | C3 | C5 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 4 | 4 | 8 | 1 | 4 |
Matrix representation of D45⋊C3 ►in GL8(𝔽181)
102 | 65 | 0 | 0 | 0 | 0 | 0 | 0 |
116 | 97 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 180 | 180 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 180 | 180 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
167 | 180 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 180 | 180 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 180 | 180 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 180 | 180 |
G:=sub<GL(8,GF(181))| [102,116,0,0,0,0,0,0,65,97,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,180,0,0,0,0,0,0,1,180,0,0,0,0,0,0,0,0,0,180,0,0,0,0,0,0,1,180,0,0],[1,167,0,0,0,0,0,0,0,180,0,0,0,0,0,0,0,0,1,180,0,0,0,0,0,0,0,180,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[48,0,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,180,1,0,0,0,0,0,0,180,0,0,0,0,0,0,0,0,0,0,180,0,0,0,0,0,0,1,180] >;
D45⋊C3 in GAP, Magma, Sage, TeX
D_{45}\rtimes C_3
% in TeX
G:=Group("D45:C3");
// GroupNames label
G:=SmallGroup(270,15);
// by ID
G=gap.SmallGroup(270,15);
# by ID
G:=PCGroup([5,-2,-3,-3,-5,-3,1532,727,462,1443,4504]);
// Polycyclic
G:=Group<a,b,c|a^45=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^31,b*c=c*b>;
// generators/relations
Export