direct product, abelian, monomial, 3-elementary
Aliases: C3×C15, SmallGroup(45,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3×C15 |
C1 — C3×C15 |
C1 — C3×C15 |
Generators and relations for C3×C15
G = < a,b | a3=b15=1, ab=ba >
(1 38 16)(2 39 17)(3 40 18)(4 41 19)(5 42 20)(6 43 21)(7 44 22)(8 45 23)(9 31 24)(10 32 25)(11 33 26)(12 34 27)(13 35 28)(14 36 29)(15 37 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
G:=sub<Sym(45)| (1,38,16)(2,39,17)(3,40,18)(4,41,19)(5,42,20)(6,43,21)(7,44,22)(8,45,23)(9,31,24)(10,32,25)(11,33,26)(12,34,27)(13,35,28)(14,36,29)(15,37,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)>;
G:=Group( (1,38,16)(2,39,17)(3,40,18)(4,41,19)(5,42,20)(6,43,21)(7,44,22)(8,45,23)(9,31,24)(10,32,25)(11,33,26)(12,34,27)(13,35,28)(14,36,29)(15,37,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45) );
G=PermutationGroup([[(1,38,16),(2,39,17),(3,40,18),(4,41,19),(5,42,20),(6,43,21),(7,44,22),(8,45,23),(9,31,24),(10,32,25),(11,33,26),(12,34,27),(13,35,28),(14,36,29),(15,37,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)]])
C3×C15 is a maximal subgroup of
C3⋊D15
45 conjugacy classes
class | 1 | 3A | ··· | 3H | 5A | 5B | 5C | 5D | 15A | ··· | 15AF |
order | 1 | 3 | ··· | 3 | 5 | 5 | 5 | 5 | 15 | ··· | 15 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C3 | C5 | C15 |
kernel | C3×C15 | C15 | C32 | C3 |
# reps | 1 | 8 | 4 | 32 |
Matrix representation of C3×C15 ►in GL2(𝔽31) generated by
5 | 0 |
0 | 5 |
10 | 0 |
0 | 7 |
G:=sub<GL(2,GF(31))| [5,0,0,5],[10,0,0,7] >;
C3×C15 in GAP, Magma, Sage, TeX
C_3\times C_{15}
% in TeX
G:=Group("C3xC15");
// GroupNames label
G:=SmallGroup(45,2);
// by ID
G=gap.SmallGroup(45,2);
# by ID
G:=PCGroup([3,-3,-3,-5]);
// Polycyclic
G:=Group<a,b|a^3=b^15=1,a*b=b*a>;
// generators/relations
Export