# Extensions 1→N→G→Q→1 with N=C3×C15 and Q=C6

Direct product G=N×Q with N=C3×C15 and Q=C6
dρLabelID
C32×C30270C3^2xC30270,30

Semidirect products G=N:Q with N=C3×C15 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C15)⋊1C6 = He3⋊D5φ: C6/C1C6 ⊆ Aut C3×C15456+(C3xC15):1C6270,14
(C3×C15)⋊2C6 = D5×He3φ: C6/C1C6 ⊆ Aut C3×C15456(C3xC15):2C6270,6
(C3×C15)⋊3C6 = C5×C32⋊C6φ: C6/C1C6 ⊆ Aut C3×C15456(C3xC15):3C6270,10
(C3×C15)⋊4C6 = C10×He3φ: C6/C2C3 ⊆ Aut C3×C15903(C3xC15):4C6270,21
(C3×C15)⋊5C6 = C3×C3⋊D15φ: C6/C3C2 ⊆ Aut C3×C1590(C3xC15):5C6270,27
(C3×C15)⋊6C6 = C32×D15φ: C6/C3C2 ⊆ Aut C3×C1590(C3xC15):6C6270,25
(C3×C15)⋊7C6 = D5×C33φ: C6/C3C2 ⊆ Aut C3×C15135(C3xC15):7C6270,23
(C3×C15)⋊8C6 = S3×C3×C15φ: C6/C3C2 ⊆ Aut C3×C1590(C3xC15):8C6270,24
(C3×C15)⋊9C6 = C15×C3⋊S3φ: C6/C3C2 ⊆ Aut C3×C1590(C3xC15):9C6270,26

Non-split extensions G=N.Q with N=C3×C15 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C15).C6 = D5×3- 1+2φ: C6/C1C6 ⊆ Aut C3×C15456(C3xC15).C6270,7
(C3×C15).2C6 = C10×3- 1+2φ: C6/C2C3 ⊆ Aut C3×C15903(C3xC15).2C6270,22
(C3×C15).3C6 = C9×D15φ: C6/C3C2 ⊆ Aut C3×C15902(C3xC15).3C6270,13
(C3×C15).4C6 = D5×C3×C9φ: C6/C3C2 ⊆ Aut C3×C15135(C3xC15).4C6270,5
(C3×C15).5C6 = S3×C45φ: C6/C3C2 ⊆ Aut C3×C15902(C3xC15).5C6270,9

׿
×
𝔽