Copied to
clipboard

G = S3×C45order 270 = 2·33·5

Direct product of C45 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C45, C3⋊C90, C153C18, C32.2C30, (C3×C9)⋊1C10, (C3×C45)⋊1C2, (S3×C15).C3, (C3×S3).C15, C3.4(S3×C15), C15.8(C3×S3), (C3×C15).5C6, SmallGroup(270,9)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C45
C1C3C32C3×C15C3×C45 — S3×C45
C3 — S3×C45
C1C45

Generators and relations for S3×C45
 G = < a,b,c | a45=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
2C3
3C6
2C9
3C10
2C15
3C18
3C30
2C45
3C90

Smallest permutation representation of S3×C45
On 90 points
Generators in S90
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 31 16)(2 32 17)(3 33 18)(4 34 19)(5 35 20)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)(46 61 76)(47 62 77)(48 63 78)(49 64 79)(50 65 80)(51 66 81)(52 67 82)(53 68 83)(54 69 84)(55 70 85)(56 71 86)(57 72 87)(58 73 88)(59 74 89)(60 75 90)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 73)(13 74)(14 75)(15 76)(16 77)(17 78)(18 79)(19 80)(20 81)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)(41 57)(42 58)(43 59)(44 60)(45 61)

G:=sub<Sym(90)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,31,16)(2,32,17)(3,33,18)(4,34,19)(5,35,20)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,61,76)(47,62,77)(48,63,78)(49,64,79)(50,65,80)(51,66,81)(52,67,82)(53,68,83)(54,69,84)(55,70,85)(56,71,86)(57,72,87)(58,73,88)(59,74,89)(60,75,90), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,31,16)(2,32,17)(3,33,18)(4,34,19)(5,35,20)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,61,76)(47,62,77)(48,63,78)(49,64,79)(50,65,80)(51,66,81)(52,67,82)(53,68,83)(54,69,84)(55,70,85)(56,71,86)(57,72,87)(58,73,88)(59,74,89)(60,75,90), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,73)(13,74)(14,75)(15,76)(16,77)(17,78)(18,79)(19,80)(20,81)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,31,16),(2,32,17),(3,33,18),(4,34,19),(5,35,20),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30),(46,61,76),(47,62,77),(48,63,78),(49,64,79),(50,65,80),(51,66,81),(52,67,82),(53,68,83),(54,69,84),(55,70,85),(56,71,86),(57,72,87),(58,73,88),(59,74,89),(60,75,90)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,73),(13,74),(14,75),(15,76),(16,77),(17,78),(18,79),(19,80),(20,81),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56),(41,57),(42,58),(43,59),(44,60),(45,61)])

135 conjugacy classes

class 1  2 3A3B3C3D3E5A5B5C5D6A6B9A···9F9G···9L10A10B10C10D15A···15H15I···15T18A···18F30A···30H45A···45X45Y···45AV90A···90X
order12333335555669···99···91010101015···1515···1518···1830···3045···4545···4590···90
size13112221111331···12···233331···12···23···33···31···12···23···3

135 irreducible representations

dim111111111111222222
type+++
imageC1C2C3C5C6C9C10C15C18C30C45C90S3C3×S3C5×S3S3×C9S3×C15S3×C45
kernelS3×C45C3×C45S3×C15S3×C9C3×C15C5×S3C3×C9C3×S3C15C32S3C3C45C15C9C5C3C1
# reps112426486824241246824

Matrix representation of S3×C45 in GL3(𝔽181) generated by

12600
0650
0065
,
100
048158
00132
,
18000
041126
047140
G:=sub<GL(3,GF(181))| [126,0,0,0,65,0,0,0,65],[1,0,0,0,48,0,0,158,132],[180,0,0,0,41,47,0,126,140] >;

S3×C45 in GAP, Magma, Sage, TeX

S_3\times C_{45}
% in TeX

G:=Group("S3xC45");
// GroupNames label

G:=SmallGroup(270,9);
// by ID

G=gap.SmallGroup(270,9);
# by ID

G:=PCGroup([5,-2,-3,-5,-3,-3,156,4504]);
// Polycyclic

G:=Group<a,b,c|a^45=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C45 in TeX

׿
×
𝔽