Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C22

Direct product G=N×Q with N=C6 and Q=C2×C22

Semidirect products G=N:Q with N=C6 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C22) = S3×C2×C22φ: C2×C22/C22C2 ⊆ Aut C6132C6:(C2xC22)264,37

Non-split extensions G=N.Q with N=C6 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C22) = C11×Dic6φ: C2×C22/C22C2 ⊆ Aut C62642C6.1(C2xC22)264,18
C6.2(C2×C22) = S3×C44φ: C2×C22/C22C2 ⊆ Aut C61322C6.2(C2xC22)264,19
C6.3(C2×C22) = C11×D12φ: C2×C22/C22C2 ⊆ Aut C61322C6.3(C2xC22)264,20
C6.4(C2×C22) = Dic3×C22φ: C2×C22/C22C2 ⊆ Aut C6264C6.4(C2xC22)264,21
C6.5(C2×C22) = C11×C3⋊D4φ: C2×C22/C22C2 ⊆ Aut C61322C6.5(C2xC22)264,22
C6.6(C2×C22) = D4×C33central extension (φ=1)1322C6.6(C2xC22)264,29
C6.7(C2×C22) = Q8×C33central extension (φ=1)2642C6.7(C2xC22)264,30