Copied to
clipboard

G = C11×C3⋊D4order 264 = 23·3·11

Direct product of C11 and C3⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C11×C3⋊D4, C339D4, D62C22, Dic3⋊C22, C22.17D6, C66.22C22, C32(D4×C11), (C2×C22)⋊3S3, (C2×C66)⋊6C2, (C2×C6)⋊2C22, (S3×C22)⋊5C2, C2.5(S3×C22), C6.5(C2×C22), C222(S3×C11), (C11×Dic3)⋊4C2, SmallGroup(264,22)

Series: Derived Chief Lower central Upper central

C1C6 — C11×C3⋊D4
C1C3C6C66S3×C22 — C11×C3⋊D4
C3C6 — C11×C3⋊D4
C1C22C2×C22

Generators and relations for C11×C3⋊D4
 G = < a,b,c,d | a11=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

2C2
6C2
3C22
3C4
2C6
2S3
2C22
6C22
3D4
3C2×C22
3C44
2C66
2S3×C11
3D4×C11

Smallest permutation representation of C11×C3⋊D4
On 132 points
Generators in S132
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)
(1 80 90)(2 81 91)(3 82 92)(4 83 93)(5 84 94)(6 85 95)(7 86 96)(8 87 97)(9 88 98)(10 78 99)(11 79 89)(12 40 50)(13 41 51)(14 42 52)(15 43 53)(16 44 54)(17 34 55)(18 35 45)(19 36 46)(20 37 47)(21 38 48)(22 39 49)(23 122 60)(24 123 61)(25 124 62)(26 125 63)(27 126 64)(28 127 65)(29 128 66)(30 129 56)(31 130 57)(32 131 58)(33 132 59)(67 121 110)(68 111 100)(69 112 101)(70 113 102)(71 114 103)(72 115 104)(73 116 105)(74 117 106)(75 118 107)(76 119 108)(77 120 109)
(1 41 75 23)(2 42 76 24)(3 43 77 25)(4 44 67 26)(5 34 68 27)(6 35 69 28)(7 36 70 29)(8 37 71 30)(9 38 72 31)(10 39 73 32)(11 40 74 33)(12 117 59 79)(13 118 60 80)(14 119 61 81)(15 120 62 82)(16 121 63 83)(17 111 64 84)(18 112 65 85)(19 113 66 86)(20 114 56 87)(21 115 57 88)(22 116 58 78)(45 101 127 95)(46 102 128 96)(47 103 129 97)(48 104 130 98)(49 105 131 99)(50 106 132 89)(51 107 122 90)(52 108 123 91)(53 109 124 92)(54 110 125 93)(55 100 126 94)
(12 132)(13 122)(14 123)(15 124)(16 125)(17 126)(18 127)(19 128)(20 129)(21 130)(22 131)(23 41)(24 42)(25 43)(26 44)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(33 40)(45 65)(46 66)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(78 99)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(100 111)(101 112)(102 113)(103 114)(104 115)(105 116)(106 117)(107 118)(108 119)(109 120)(110 121)

G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,80,90)(2,81,91)(3,82,92)(4,83,93)(5,84,94)(6,85,95)(7,86,96)(8,87,97)(9,88,98)(10,78,99)(11,79,89)(12,40,50)(13,41,51)(14,42,52)(15,43,53)(16,44,54)(17,34,55)(18,35,45)(19,36,46)(20,37,47)(21,38,48)(22,39,49)(23,122,60)(24,123,61)(25,124,62)(26,125,63)(27,126,64)(28,127,65)(29,128,66)(30,129,56)(31,130,57)(32,131,58)(33,132,59)(67,121,110)(68,111,100)(69,112,101)(70,113,102)(71,114,103)(72,115,104)(73,116,105)(74,117,106)(75,118,107)(76,119,108)(77,120,109), (1,41,75,23)(2,42,76,24)(3,43,77,25)(4,44,67,26)(5,34,68,27)(6,35,69,28)(7,36,70,29)(8,37,71,30)(9,38,72,31)(10,39,73,32)(11,40,74,33)(12,117,59,79)(13,118,60,80)(14,119,61,81)(15,120,62,82)(16,121,63,83)(17,111,64,84)(18,112,65,85)(19,113,66,86)(20,114,56,87)(21,115,57,88)(22,116,58,78)(45,101,127,95)(46,102,128,96)(47,103,129,97)(48,104,130,98)(49,105,131,99)(50,106,132,89)(51,107,122,90)(52,108,123,91)(53,109,124,92)(54,110,125,93)(55,100,126,94), (12,132)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40)(45,65)(46,66)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(78,99)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,80,90)(2,81,91)(3,82,92)(4,83,93)(5,84,94)(6,85,95)(7,86,96)(8,87,97)(9,88,98)(10,78,99)(11,79,89)(12,40,50)(13,41,51)(14,42,52)(15,43,53)(16,44,54)(17,34,55)(18,35,45)(19,36,46)(20,37,47)(21,38,48)(22,39,49)(23,122,60)(24,123,61)(25,124,62)(26,125,63)(27,126,64)(28,127,65)(29,128,66)(30,129,56)(31,130,57)(32,131,58)(33,132,59)(67,121,110)(68,111,100)(69,112,101)(70,113,102)(71,114,103)(72,115,104)(73,116,105)(74,117,106)(75,118,107)(76,119,108)(77,120,109), (1,41,75,23)(2,42,76,24)(3,43,77,25)(4,44,67,26)(5,34,68,27)(6,35,69,28)(7,36,70,29)(8,37,71,30)(9,38,72,31)(10,39,73,32)(11,40,74,33)(12,117,59,79)(13,118,60,80)(14,119,61,81)(15,120,62,82)(16,121,63,83)(17,111,64,84)(18,112,65,85)(19,113,66,86)(20,114,56,87)(21,115,57,88)(22,116,58,78)(45,101,127,95)(46,102,128,96)(47,103,129,97)(48,104,130,98)(49,105,131,99)(50,106,132,89)(51,107,122,90)(52,108,123,91)(53,109,124,92)(54,110,125,93)(55,100,126,94), (12,132)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40)(45,65)(46,66)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(78,99)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132)], [(1,80,90),(2,81,91),(3,82,92),(4,83,93),(5,84,94),(6,85,95),(7,86,96),(8,87,97),(9,88,98),(10,78,99),(11,79,89),(12,40,50),(13,41,51),(14,42,52),(15,43,53),(16,44,54),(17,34,55),(18,35,45),(19,36,46),(20,37,47),(21,38,48),(22,39,49),(23,122,60),(24,123,61),(25,124,62),(26,125,63),(27,126,64),(28,127,65),(29,128,66),(30,129,56),(31,130,57),(32,131,58),(33,132,59),(67,121,110),(68,111,100),(69,112,101),(70,113,102),(71,114,103),(72,115,104),(73,116,105),(74,117,106),(75,118,107),(76,119,108),(77,120,109)], [(1,41,75,23),(2,42,76,24),(3,43,77,25),(4,44,67,26),(5,34,68,27),(6,35,69,28),(7,36,70,29),(8,37,71,30),(9,38,72,31),(10,39,73,32),(11,40,74,33),(12,117,59,79),(13,118,60,80),(14,119,61,81),(15,120,62,82),(16,121,63,83),(17,111,64,84),(18,112,65,85),(19,113,66,86),(20,114,56,87),(21,115,57,88),(22,116,58,78),(45,101,127,95),(46,102,128,96),(47,103,129,97),(48,104,130,98),(49,105,131,99),(50,106,132,89),(51,107,122,90),(52,108,123,91),(53,109,124,92),(54,110,125,93),(55,100,126,94)], [(12,132),(13,122),(14,123),(15,124),(16,125),(17,126),(18,127),(19,128),(20,129),(21,130),(22,131),(23,41),(24,42),(25,43),(26,44),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(33,40),(45,65),(46,66),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(78,99),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(100,111),(101,112),(102,113),(103,114),(104,115),(105,116),(106,117),(107,118),(108,119),(109,120),(110,121)]])

99 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C11A···11J22A···22J22K···22T22U···22AD33A···33J44A···44J66A···66AD
order12223466611···1122···2222···2222···2233···3344···4466···66
size1126262221···11···12···26···62···26···62···2

99 irreducible representations

dim1111111122222222
type+++++++
imageC1C2C2C2C11C22C22C22S3D4D6C3⋊D4S3×C11D4×C11S3×C22C11×C3⋊D4
kernelC11×C3⋊D4C11×Dic3S3×C22C2×C66C3⋊D4Dic3D6C2×C6C2×C22C33C22C11C22C3C2C1
# reps111110101010111210101020

Matrix representation of C11×C3⋊D4 in GL2(𝔽397) generated by

2730
0273
,
0396
1396
,
35123
37446
,
01
10
G:=sub<GL(2,GF(397))| [273,0,0,273],[0,1,396,396],[351,374,23,46],[0,1,1,0] >;

C11×C3⋊D4 in GAP, Magma, Sage, TeX

C_{11}\times C_3\rtimes D_4
% in TeX

G:=Group("C11xC3:D4");
// GroupNames label

G:=SmallGroup(264,22);
// by ID

G=gap.SmallGroup(264,22);
# by ID

G:=PCGroup([5,-2,-2,-11,-2,-3,461,4404]);
// Polycyclic

G:=Group<a,b,c,d|a^11=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C11×C3⋊D4 in TeX

׿
×
𝔽