direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C11×C3⋊D4, C33⋊9D4, D6⋊2C22, Dic3⋊C22, C22.17D6, C66.22C22, C3⋊2(D4×C11), (C2×C22)⋊3S3, (C2×C66)⋊6C2, (C2×C6)⋊2C22, (S3×C22)⋊5C2, C2.5(S3×C22), C6.5(C2×C22), C22⋊2(S3×C11), (C11×Dic3)⋊4C2, SmallGroup(264,22)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C11×C3⋊D4
G = < a,b,c,d | a11=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)
(1 80 90)(2 81 91)(3 82 92)(4 83 93)(5 84 94)(6 85 95)(7 86 96)(8 87 97)(9 88 98)(10 78 99)(11 79 89)(12 40 50)(13 41 51)(14 42 52)(15 43 53)(16 44 54)(17 34 55)(18 35 45)(19 36 46)(20 37 47)(21 38 48)(22 39 49)(23 122 60)(24 123 61)(25 124 62)(26 125 63)(27 126 64)(28 127 65)(29 128 66)(30 129 56)(31 130 57)(32 131 58)(33 132 59)(67 121 110)(68 111 100)(69 112 101)(70 113 102)(71 114 103)(72 115 104)(73 116 105)(74 117 106)(75 118 107)(76 119 108)(77 120 109)
(1 41 75 23)(2 42 76 24)(3 43 77 25)(4 44 67 26)(5 34 68 27)(6 35 69 28)(7 36 70 29)(8 37 71 30)(9 38 72 31)(10 39 73 32)(11 40 74 33)(12 117 59 79)(13 118 60 80)(14 119 61 81)(15 120 62 82)(16 121 63 83)(17 111 64 84)(18 112 65 85)(19 113 66 86)(20 114 56 87)(21 115 57 88)(22 116 58 78)(45 101 127 95)(46 102 128 96)(47 103 129 97)(48 104 130 98)(49 105 131 99)(50 106 132 89)(51 107 122 90)(52 108 123 91)(53 109 124 92)(54 110 125 93)(55 100 126 94)
(12 132)(13 122)(14 123)(15 124)(16 125)(17 126)(18 127)(19 128)(20 129)(21 130)(22 131)(23 41)(24 42)(25 43)(26 44)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(33 40)(45 65)(46 66)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(55 64)(78 99)(79 89)(80 90)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(100 111)(101 112)(102 113)(103 114)(104 115)(105 116)(106 117)(107 118)(108 119)(109 120)(110 121)
G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,80,90)(2,81,91)(3,82,92)(4,83,93)(5,84,94)(6,85,95)(7,86,96)(8,87,97)(9,88,98)(10,78,99)(11,79,89)(12,40,50)(13,41,51)(14,42,52)(15,43,53)(16,44,54)(17,34,55)(18,35,45)(19,36,46)(20,37,47)(21,38,48)(22,39,49)(23,122,60)(24,123,61)(25,124,62)(26,125,63)(27,126,64)(28,127,65)(29,128,66)(30,129,56)(31,130,57)(32,131,58)(33,132,59)(67,121,110)(68,111,100)(69,112,101)(70,113,102)(71,114,103)(72,115,104)(73,116,105)(74,117,106)(75,118,107)(76,119,108)(77,120,109), (1,41,75,23)(2,42,76,24)(3,43,77,25)(4,44,67,26)(5,34,68,27)(6,35,69,28)(7,36,70,29)(8,37,71,30)(9,38,72,31)(10,39,73,32)(11,40,74,33)(12,117,59,79)(13,118,60,80)(14,119,61,81)(15,120,62,82)(16,121,63,83)(17,111,64,84)(18,112,65,85)(19,113,66,86)(20,114,56,87)(21,115,57,88)(22,116,58,78)(45,101,127,95)(46,102,128,96)(47,103,129,97)(48,104,130,98)(49,105,131,99)(50,106,132,89)(51,107,122,90)(52,108,123,91)(53,109,124,92)(54,110,125,93)(55,100,126,94), (12,132)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40)(45,65)(46,66)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(78,99)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,80,90)(2,81,91)(3,82,92)(4,83,93)(5,84,94)(6,85,95)(7,86,96)(8,87,97)(9,88,98)(10,78,99)(11,79,89)(12,40,50)(13,41,51)(14,42,52)(15,43,53)(16,44,54)(17,34,55)(18,35,45)(19,36,46)(20,37,47)(21,38,48)(22,39,49)(23,122,60)(24,123,61)(25,124,62)(26,125,63)(27,126,64)(28,127,65)(29,128,66)(30,129,56)(31,130,57)(32,131,58)(33,132,59)(67,121,110)(68,111,100)(69,112,101)(70,113,102)(71,114,103)(72,115,104)(73,116,105)(74,117,106)(75,118,107)(76,119,108)(77,120,109), (1,41,75,23)(2,42,76,24)(3,43,77,25)(4,44,67,26)(5,34,68,27)(6,35,69,28)(7,36,70,29)(8,37,71,30)(9,38,72,31)(10,39,73,32)(11,40,74,33)(12,117,59,79)(13,118,60,80)(14,119,61,81)(15,120,62,82)(16,121,63,83)(17,111,64,84)(18,112,65,85)(19,113,66,86)(20,114,56,87)(21,115,57,88)(22,116,58,78)(45,101,127,95)(46,102,128,96)(47,103,129,97)(48,104,130,98)(49,105,131,99)(50,106,132,89)(51,107,122,90)(52,108,123,91)(53,109,124,92)(54,110,125,93)(55,100,126,94), (12,132)(13,122)(14,123)(15,124)(16,125)(17,126)(18,127)(19,128)(20,129)(21,130)(22,131)(23,41)(24,42)(25,43)(26,44)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(33,40)(45,65)(46,66)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(55,64)(78,99)(79,89)(80,90)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(100,111)(101,112)(102,113)(103,114)(104,115)(105,116)(106,117)(107,118)(108,119)(109,120)(110,121) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132)], [(1,80,90),(2,81,91),(3,82,92),(4,83,93),(5,84,94),(6,85,95),(7,86,96),(8,87,97),(9,88,98),(10,78,99),(11,79,89),(12,40,50),(13,41,51),(14,42,52),(15,43,53),(16,44,54),(17,34,55),(18,35,45),(19,36,46),(20,37,47),(21,38,48),(22,39,49),(23,122,60),(24,123,61),(25,124,62),(26,125,63),(27,126,64),(28,127,65),(29,128,66),(30,129,56),(31,130,57),(32,131,58),(33,132,59),(67,121,110),(68,111,100),(69,112,101),(70,113,102),(71,114,103),(72,115,104),(73,116,105),(74,117,106),(75,118,107),(76,119,108),(77,120,109)], [(1,41,75,23),(2,42,76,24),(3,43,77,25),(4,44,67,26),(5,34,68,27),(6,35,69,28),(7,36,70,29),(8,37,71,30),(9,38,72,31),(10,39,73,32),(11,40,74,33),(12,117,59,79),(13,118,60,80),(14,119,61,81),(15,120,62,82),(16,121,63,83),(17,111,64,84),(18,112,65,85),(19,113,66,86),(20,114,56,87),(21,115,57,88),(22,116,58,78),(45,101,127,95),(46,102,128,96),(47,103,129,97),(48,104,130,98),(49,105,131,99),(50,106,132,89),(51,107,122,90),(52,108,123,91),(53,109,124,92),(54,110,125,93),(55,100,126,94)], [(12,132),(13,122),(14,123),(15,124),(16,125),(17,126),(18,127),(19,128),(20,129),(21,130),(22,131),(23,41),(24,42),(25,43),(26,44),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(33,40),(45,65),(46,66),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(55,64),(78,99),(79,89),(80,90),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(100,111),(101,112),(102,113),(103,114),(104,115),(105,116),(106,117),(107,118),(108,119),(109,120),(110,121)]])
99 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6A | 6B | 6C | 11A | ··· | 11J | 22A | ··· | 22J | 22K | ··· | 22T | 22U | ··· | 22AD | 33A | ··· | 33J | 44A | ··· | 44J | 66A | ··· | 66AD |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 6 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 22 | ··· | 22 | 22 | ··· | 22 | 33 | ··· | 33 | 44 | ··· | 44 | 66 | ··· | 66 |
size | 1 | 1 | 2 | 6 | 2 | 6 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 |
99 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C11 | C22 | C22 | C22 | S3 | D4 | D6 | C3⋊D4 | S3×C11 | D4×C11 | S3×C22 | C11×C3⋊D4 |
kernel | C11×C3⋊D4 | C11×Dic3 | S3×C22 | C2×C66 | C3⋊D4 | Dic3 | D6 | C2×C6 | C2×C22 | C33 | C22 | C11 | C22 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 1 | 1 | 1 | 2 | 10 | 10 | 10 | 20 |
Matrix representation of C11×C3⋊D4 ►in GL2(𝔽397) generated by
273 | 0 |
0 | 273 |
0 | 396 |
1 | 396 |
351 | 23 |
374 | 46 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(397))| [273,0,0,273],[0,1,396,396],[351,374,23,46],[0,1,1,0] >;
C11×C3⋊D4 in GAP, Magma, Sage, TeX
C_{11}\times C_3\rtimes D_4
% in TeX
G:=Group("C11xC3:D4");
// GroupNames label
G:=SmallGroup(264,22);
// by ID
G=gap.SmallGroup(264,22);
# by ID
G:=PCGroup([5,-2,-2,-11,-2,-3,461,4404]);
// Polycyclic
G:=Group<a,b,c,d|a^11=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export