Copied to
clipboard

G = S3×C2×C22order 264 = 23·3·11

Direct product of C2×C22 and S3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C2×C22, C334C23, C664C22, C6⋊(C2×C22), C3⋊(C22×C22), (C2×C66)⋊7C2, (C2×C6)⋊3C22, SmallGroup(264,37)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C2×C22
C1C3C33S3×C11S3×C22 — S3×C2×C22
C3 — S3×C2×C22
C1C2×C22

Generators and relations for S3×C2×C22
 G = < a,b,c,d | a2=b22=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 108 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, C11, D6, C2×C6, C22, C22, C22×S3, C33, C2×C22, C2×C22, S3×C11, C66, C22×C22, S3×C22, C2×C66, S3×C2×C22
Quotients: C1, C2, C22, S3, C23, C11, D6, C22, C22×S3, C2×C22, S3×C11, C22×C22, S3×C22, S3×C2×C22

Smallest permutation representation of S3×C2×C22
On 132 points
Generators in S132
(1 56)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 121)(24 122)(25 123)(26 124)(27 125)(28 126)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 111)(36 112)(37 113)(38 114)(39 115)(40 116)(41 117)(42 118)(43 119)(44 120)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 101)(77 102)(78 103)(79 104)(80 105)(81 106)(82 107)(83 108)(84 109)(85 110)(86 89)(87 90)(88 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 29 84)(2 30 85)(3 31 86)(4 32 87)(5 33 88)(6 34 67)(7 35 68)(8 36 69)(9 37 70)(10 38 71)(11 39 72)(12 40 73)(13 41 74)(14 42 75)(15 43 76)(16 44 77)(17 23 78)(18 24 79)(19 25 80)(20 26 81)(21 27 82)(22 28 83)(45 116 98)(46 117 99)(47 118 100)(48 119 101)(49 120 102)(50 121 103)(51 122 104)(52 123 105)(53 124 106)(54 125 107)(55 126 108)(56 127 109)(57 128 110)(58 129 89)(59 130 90)(60 131 91)(61 132 92)(62 111 93)(63 112 94)(64 113 95)(65 114 96)(66 115 97)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 89)(32 90)(33 91)(34 92)(35 93)(36 94)(37 95)(38 96)(39 97)(40 98)(41 99)(42 100)(43 101)(44 102)(67 132)(68 111)(69 112)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 121)(79 122)(80 123)(81 124)(82 125)(83 126)(84 127)(85 128)(86 129)(87 130)(88 131)

G:=sub<Sym(132)| (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109)(85,110)(86,89)(87,90)(88,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,29,84)(2,30,85)(3,31,86)(4,32,87)(5,33,88)(6,34,67)(7,35,68)(8,36,69)(9,37,70)(10,38,71)(11,39,72)(12,40,73)(13,41,74)(14,42,75)(15,43,76)(16,44,77)(17,23,78)(18,24,79)(19,25,80)(20,26,81)(21,27,82)(22,28,83)(45,116,98)(46,117,99)(47,118,100)(48,119,101)(49,120,102)(50,121,103)(51,122,104)(52,123,105)(53,124,106)(54,125,107)(55,126,108)(56,127,109)(57,128,110)(58,129,89)(59,130,90)(60,131,91)(61,132,92)(62,111,93)(63,112,94)(64,113,95)(65,114,96)(66,115,97), (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,99)(42,100)(43,101)(44,102)(67,132)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131)>;

G:=Group( (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,111)(36,112)(37,113)(38,114)(39,115)(40,116)(41,117)(42,118)(43,119)(44,120)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109)(85,110)(86,89)(87,90)(88,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,29,84)(2,30,85)(3,31,86)(4,32,87)(5,33,88)(6,34,67)(7,35,68)(8,36,69)(9,37,70)(10,38,71)(11,39,72)(12,40,73)(13,41,74)(14,42,75)(15,43,76)(16,44,77)(17,23,78)(18,24,79)(19,25,80)(20,26,81)(21,27,82)(22,28,83)(45,116,98)(46,117,99)(47,118,100)(48,119,101)(49,120,102)(50,121,103)(51,122,104)(52,123,105)(53,124,106)(54,125,107)(55,126,108)(56,127,109)(57,128,110)(58,129,89)(59,130,90)(60,131,91)(61,132,92)(62,111,93)(63,112,94)(64,113,95)(65,114,96)(66,115,97), (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,99)(42,100)(43,101)(44,102)(67,132)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,121)(79,122)(80,123)(81,124)(82,125)(83,126)(84,127)(85,128)(86,129)(87,130)(88,131) );

G=PermutationGroup([[(1,56),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,121),(24,122),(25,123),(26,124),(27,125),(28,126),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,111),(36,112),(37,113),(38,114),(39,115),(40,116),(41,117),(42,118),(43,119),(44,120),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,101),(77,102),(78,103),(79,104),(80,105),(81,106),(82,107),(83,108),(84,109),(85,110),(86,89),(87,90),(88,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,29,84),(2,30,85),(3,31,86),(4,32,87),(5,33,88),(6,34,67),(7,35,68),(8,36,69),(9,37,70),(10,38,71),(11,39,72),(12,40,73),(13,41,74),(14,42,75),(15,43,76),(16,44,77),(17,23,78),(18,24,79),(19,25,80),(20,26,81),(21,27,82),(22,28,83),(45,116,98),(46,117,99),(47,118,100),(48,119,101),(49,120,102),(50,121,103),(51,122,104),(52,123,105),(53,124,106),(54,125,107),(55,126,108),(56,127,109),(57,128,110),(58,129,89),(59,130,90),(60,131,91),(61,132,92),(62,111,93),(63,112,94),(64,113,95),(65,114,96),(66,115,97)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,89),(32,90),(33,91),(34,92),(35,93),(36,94),(37,95),(38,96),(39,97),(40,98),(41,99),(42,100),(43,101),(44,102),(67,132),(68,111),(69,112),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,121),(79,122),(80,123),(81,124),(82,125),(83,126),(84,127),(85,128),(86,129),(87,130),(88,131)]])

132 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C11A···11J22A···22AD22AE···22BR33A···33J66A···66AD
order12222222366611···1122···2222···2233···3366···66
size1111333322221···11···13···32···22···2

132 irreducible representations

dim1111112222
type+++++
imageC1C2C2C11C22C22S3D6S3×C11S3×C22
kernelS3×C2×C22S3×C22C2×C66C22×S3D6C2×C6C2×C22C22C22C2
# reps161106010131030

Matrix representation of S3×C2×C22 in GL4(𝔽67) generated by

66000
0100
0010
0001
,
1000
06600
00150
00015
,
1000
0100
006666
0010
,
1000
06600
0010
006666
G:=sub<GL(4,GF(67))| [66,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,66,0,0,0,0,15,0,0,0,0,15],[1,0,0,0,0,1,0,0,0,0,66,1,0,0,66,0],[1,0,0,0,0,66,0,0,0,0,1,66,0,0,0,66] >;

S3×C2×C22 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{22}
% in TeX

G:=Group("S3xC2xC22");
// GroupNames label

G:=SmallGroup(264,37);
// by ID

G=gap.SmallGroup(264,37);
# by ID

G:=PCGroup([5,-2,-2,-2,-11,-3,4404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^22=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽