Extensions 1→N→G→Q→1 with N=C22 and Q=D34

Direct product G=N×Q with N=C22 and Q=D34

Semidirect products G=N:Q with N=C22 and Q=D34
extensionφ:Q→Aut NdρLabelID
C221D34 = D4×D17φ: D34/D17C2 ⊆ Aut C22684+C2^2:1D34272,40
C222D34 = C2×C17⋊D4φ: D34/C34C2 ⊆ Aut C22136C2^2:2D34272,45

Non-split extensions G=N.Q with N=C22 and Q=D34
extensionφ:Q→Aut NdρLabelID
C22.1D34 = D42D17φ: D34/D17C2 ⊆ Aut C221364-C2^2.1D34272,41
C22.2D34 = D685C2φ: D34/C34C2 ⊆ Aut C221362C2^2.2D34272,39
C22.3D34 = C4×Dic17central extension (φ=1)272C2^2.3D34272,11
C22.4D34 = C34.D4central extension (φ=1)272C2^2.4D34272,12
C22.5D34 = C683C4central extension (φ=1)272C2^2.5D34272,13
C22.6D34 = D34⋊C4central extension (φ=1)136C2^2.6D34272,14
C22.7D34 = C23.D17central extension (φ=1)136C2^2.7D34272,19
C22.8D34 = C2×Dic34central extension (φ=1)272C2^2.8D34272,36
C22.9D34 = C2×C4×D17central extension (φ=1)136C2^2.9D34272,37
C22.10D34 = C2×D68central extension (φ=1)136C2^2.10D34272,38
C22.11D34 = C22×Dic17central extension (φ=1)272C2^2.11D34272,44