Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C6

Direct product G=N×Q with N=C22 and Q=C2×C6
dρLabelID
C22×C66264C2^2xC66264,39

Semidirect products G=N:Q with N=C22 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C6) = C2×C6×D11φ: C2×C6/C6C2 ⊆ Aut C22132C22:(C2xC6)264,36

Non-split extensions G=N.Q with N=C22 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C6) = C3×Dic22φ: C2×C6/C6C2 ⊆ Aut C222642C22.1(C2xC6)264,13
C22.2(C2×C6) = C12×D11φ: C2×C6/C6C2 ⊆ Aut C221322C22.2(C2xC6)264,14
C22.3(C2×C6) = C3×D44φ: C2×C6/C6C2 ⊆ Aut C221322C22.3(C2xC6)264,15
C22.4(C2×C6) = C6×Dic11φ: C2×C6/C6C2 ⊆ Aut C22264C22.4(C2xC6)264,16
C22.5(C2×C6) = C3×C11⋊D4φ: C2×C6/C6C2 ⊆ Aut C221322C22.5(C2xC6)264,17
C22.6(C2×C6) = D4×C33central extension (φ=1)1322C22.6(C2xC6)264,29
C22.7(C2×C6) = Q8×C33central extension (φ=1)2642C22.7(C2xC6)264,30

׿
×
𝔽