Copied to
clipboard

G = C2×C6×D11order 264 = 23·3·11

Direct product of C2×C6 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C6×D11, C333C23, C663C22, C22⋊(C2×C6), C11⋊(C22×C6), (C2×C22)⋊5C6, (C2×C66)⋊5C2, SmallGroup(264,36)

Series: Derived Chief Lower central Upper central

C1C11 — C2×C6×D11
C1C11C33C3×D11C6×D11 — C2×C6×D11
C11 — C2×C6×D11
C1C2×C6

Generators and relations for C2×C6×D11
 G = < a,b,c,d | a2=b6=c11=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 284 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C23, C11, C2×C6, C2×C6, D11, C22, C22×C6, C33, D22, C2×C22, C3×D11, C66, C22×D11, C6×D11, C2×C66, C2×C6×D11
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, D11, C22×C6, D22, C3×D11, C22×D11, C6×D11, C2×C6×D11

Smallest permutation representation of C2×C6×D11
On 132 points
Generators in S132
(1 109)(2 110)(3 100)(4 101)(5 102)(6 103)(7 104)(8 105)(9 106)(10 107)(11 108)(12 111)(13 112)(14 113)(15 114)(16 115)(17 116)(18 117)(19 118)(20 119)(21 120)(22 121)(23 122)(24 123)(25 124)(26 125)(27 126)(28 127)(29 128)(30 129)(31 130)(32 131)(33 132)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 89)(57 90)(58 91)(59 92)(60 93)(61 94)(62 95)(63 96)(64 97)(65 98)(66 99)
(1 54 32 43 21 65)(2 55 33 44 22 66)(3 45 23 34 12 56)(4 46 24 35 13 57)(5 47 25 36 14 58)(6 48 26 37 15 59)(7 49 27 38 16 60)(8 50 28 39 17 61)(9 51 29 40 18 62)(10 52 30 41 19 63)(11 53 31 42 20 64)(67 111 89 100 78 122)(68 112 90 101 79 123)(69 113 91 102 80 124)(70 114 92 103 81 125)(71 115 93 104 82 126)(72 116 94 105 83 127)(73 117 95 106 84 128)(74 118 96 107 85 129)(75 119 97 108 86 130)(76 120 98 109 87 131)(77 121 99 110 88 132)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 44)(11 43)(12 51)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 55)(20 54)(21 53)(22 52)(23 62)(24 61)(25 60)(26 59)(27 58)(28 57)(29 56)(30 66)(31 65)(32 64)(33 63)(67 106)(68 105)(69 104)(70 103)(71 102)(72 101)(73 100)(74 110)(75 109)(76 108)(77 107)(78 117)(79 116)(80 115)(81 114)(82 113)(83 112)(84 111)(85 121)(86 120)(87 119)(88 118)(89 128)(90 127)(91 126)(92 125)(93 124)(94 123)(95 122)(96 132)(97 131)(98 130)(99 129)

G:=sub<Sym(132)| (1,109)(2,110)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,107)(11,108)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99), (1,54,32,43,21,65)(2,55,33,44,22,66)(3,45,23,34,12,56)(4,46,24,35,13,57)(5,47,25,36,14,58)(6,48,26,37,15,59)(7,49,27,38,16,60)(8,50,28,39,17,61)(9,51,29,40,18,62)(10,52,30,41,19,63)(11,53,31,42,20,64)(67,111,89,100,78,122)(68,112,90,101,79,123)(69,113,91,102,80,124)(70,114,92,103,81,125)(71,115,93,104,82,126)(72,116,94,105,83,127)(73,117,95,106,84,128)(74,118,96,107,85,129)(75,119,97,108,86,130)(76,120,98,109,87,131)(77,121,99,110,88,132), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,44)(11,43)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,55)(20,54)(21,53)(22,52)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,66)(31,65)(32,64)(33,63)(67,106)(68,105)(69,104)(70,103)(71,102)(72,101)(73,100)(74,110)(75,109)(76,108)(77,107)(78,117)(79,116)(80,115)(81,114)(82,113)(83,112)(84,111)(85,121)(86,120)(87,119)(88,118)(89,128)(90,127)(91,126)(92,125)(93,124)(94,123)(95,122)(96,132)(97,131)(98,130)(99,129)>;

G:=Group( (1,109)(2,110)(3,100)(4,101)(5,102)(6,103)(7,104)(8,105)(9,106)(10,107)(11,108)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99), (1,54,32,43,21,65)(2,55,33,44,22,66)(3,45,23,34,12,56)(4,46,24,35,13,57)(5,47,25,36,14,58)(6,48,26,37,15,59)(7,49,27,38,16,60)(8,50,28,39,17,61)(9,51,29,40,18,62)(10,52,30,41,19,63)(11,53,31,42,20,64)(67,111,89,100,78,122)(68,112,90,101,79,123)(69,113,91,102,80,124)(70,114,92,103,81,125)(71,115,93,104,82,126)(72,116,94,105,83,127)(73,117,95,106,84,128)(74,118,96,107,85,129)(75,119,97,108,86,130)(76,120,98,109,87,131)(77,121,99,110,88,132), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,44)(11,43)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,55)(20,54)(21,53)(22,52)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,66)(31,65)(32,64)(33,63)(67,106)(68,105)(69,104)(70,103)(71,102)(72,101)(73,100)(74,110)(75,109)(76,108)(77,107)(78,117)(79,116)(80,115)(81,114)(82,113)(83,112)(84,111)(85,121)(86,120)(87,119)(88,118)(89,128)(90,127)(91,126)(92,125)(93,124)(94,123)(95,122)(96,132)(97,131)(98,130)(99,129) );

G=PermutationGroup([[(1,109),(2,110),(3,100),(4,101),(5,102),(6,103),(7,104),(8,105),(9,106),(10,107),(11,108),(12,111),(13,112),(14,113),(15,114),(16,115),(17,116),(18,117),(19,118),(20,119),(21,120),(22,121),(23,122),(24,123),(25,124),(26,125),(27,126),(28,127),(29,128),(30,129),(31,130),(32,131),(33,132),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,89),(57,90),(58,91),(59,92),(60,93),(61,94),(62,95),(63,96),(64,97),(65,98),(66,99)], [(1,54,32,43,21,65),(2,55,33,44,22,66),(3,45,23,34,12,56),(4,46,24,35,13,57),(5,47,25,36,14,58),(6,48,26,37,15,59),(7,49,27,38,16,60),(8,50,28,39,17,61),(9,51,29,40,18,62),(10,52,30,41,19,63),(11,53,31,42,20,64),(67,111,89,100,78,122),(68,112,90,101,79,123),(69,113,91,102,80,124),(70,114,92,103,81,125),(71,115,93,104,82,126),(72,116,94,105,83,127),(73,117,95,106,84,128),(74,118,96,107,85,129),(75,119,97,108,86,130),(76,120,98,109,87,131),(77,121,99,110,88,132)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,44),(11,43),(12,51),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,55),(20,54),(21,53),(22,52),(23,62),(24,61),(25,60),(26,59),(27,58),(28,57),(29,56),(30,66),(31,65),(32,64),(33,63),(67,106),(68,105),(69,104),(70,103),(71,102),(72,101),(73,100),(74,110),(75,109),(76,108),(77,107),(78,117),(79,116),(80,115),(81,114),(82,113),(83,112),(84,111),(85,121),(86,120),(87,119),(88,118),(89,128),(90,127),(91,126),(92,125),(93,124),(94,123),(95,122),(96,132),(97,131),(98,130),(99,129)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B6A···6F6G···6N11A···11E22A···22O33A···33J66A···66AD
order12222222336···66···611···1122···2233···3366···66
size111111111111111···111···112···22···22···22···2

84 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6D11D22C3×D11C6×D11
kernelC2×C6×D11C6×D11C2×C66C22×D11D22C2×C22C2×C6C6C22C2
# reps16121225151030

Matrix representation of C2×C6×D11 in GL3(𝔽67) generated by

6600
010
001
,
3800
0380
0038
,
100
04310
06659
,
100
04720
03720
G:=sub<GL(3,GF(67))| [66,0,0,0,1,0,0,0,1],[38,0,0,0,38,0,0,0,38],[1,0,0,0,43,66,0,10,59],[1,0,0,0,47,37,0,20,20] >;

C2×C6×D11 in GAP, Magma, Sage, TeX

C_2\times C_6\times D_{11}
% in TeX

G:=Group("C2xC6xD11");
// GroupNames label

G:=SmallGroup(264,36);
// by ID

G=gap.SmallGroup(264,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^11=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽