Copied to
clipboard

G = C3×D44order 264 = 23·3·11

Direct product of C3 and D44

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D44, C335D4, C441C6, C1323C2, D221C6, C123D11, C6.15D22, C66.15C22, C4⋊(C3×D11), C111(C3×D4), (C6×D11)⋊4C2, C22.3(C2×C6), C2.4(C6×D11), SmallGroup(264,15)

Series: Derived Chief Lower central Upper central

C1C22 — C3×D44
C1C11C22C66C6×D11 — C3×D44
C11C22 — C3×D44
C1C6C12

Generators and relations for C3×D44
 G = < a,b,c | a3=b44=c2=1, ab=ba, ac=ca, cbc=b-1 >

22C2
22C2
11C22
11C22
22C6
22C6
2D11
2D11
11D4
11C2×C6
11C2×C6
2C3×D11
2C3×D11
11C3×D4

Smallest permutation representation of C3×D44
On 132 points
Generators in S132
(1 89 50)(2 90 51)(3 91 52)(4 92 53)(5 93 54)(6 94 55)(7 95 56)(8 96 57)(9 97 58)(10 98 59)(11 99 60)(12 100 61)(13 101 62)(14 102 63)(15 103 64)(16 104 65)(17 105 66)(18 106 67)(19 107 68)(20 108 69)(21 109 70)(22 110 71)(23 111 72)(24 112 73)(25 113 74)(26 114 75)(27 115 76)(28 116 77)(29 117 78)(30 118 79)(31 119 80)(32 120 81)(33 121 82)(34 122 83)(35 123 84)(36 124 85)(37 125 86)(38 126 87)(39 127 88)(40 128 45)(41 129 46)(42 130 47)(43 131 48)(44 132 49)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 24)(22 23)(45 54)(46 53)(47 52)(48 51)(49 50)(55 88)(56 87)(57 86)(58 85)(59 84)(60 83)(61 82)(62 81)(63 80)(64 79)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(89 132)(90 131)(91 130)(92 129)(93 128)(94 127)(95 126)(96 125)(97 124)(98 123)(99 122)(100 121)(101 120)(102 119)(103 118)(104 117)(105 116)(106 115)(107 114)(108 113)(109 112)(110 111)

G:=sub<Sym(132)| (1,89,50)(2,90,51)(3,91,52)(4,92,53)(5,93,54)(6,94,55)(7,95,56)(8,96,57)(9,97,58)(10,98,59)(11,99,60)(12,100,61)(13,101,62)(14,102,63)(15,103,64)(16,104,65)(17,105,66)(18,106,67)(19,107,68)(20,108,69)(21,109,70)(22,110,71)(23,111,72)(24,112,73)(25,113,74)(26,114,75)(27,115,76)(28,116,77)(29,117,78)(30,118,79)(31,119,80)(32,120,81)(33,121,82)(34,122,83)(35,123,84)(36,124,85)(37,125,86)(38,126,87)(39,127,88)(40,128,45)(41,129,46)(42,130,47)(43,131,48)(44,132,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,54)(46,53)(47,52)(48,51)(49,50)(55,88)(56,87)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,125)(97,124)(98,123)(99,122)(100,121)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111)>;

G:=Group( (1,89,50)(2,90,51)(3,91,52)(4,92,53)(5,93,54)(6,94,55)(7,95,56)(8,96,57)(9,97,58)(10,98,59)(11,99,60)(12,100,61)(13,101,62)(14,102,63)(15,103,64)(16,104,65)(17,105,66)(18,106,67)(19,107,68)(20,108,69)(21,109,70)(22,110,71)(23,111,72)(24,112,73)(25,113,74)(26,114,75)(27,115,76)(28,116,77)(29,117,78)(30,118,79)(31,119,80)(32,120,81)(33,121,82)(34,122,83)(35,123,84)(36,124,85)(37,125,86)(38,126,87)(39,127,88)(40,128,45)(41,129,46)(42,130,47)(43,131,48)(44,132,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,24)(22,23)(45,54)(46,53)(47,52)(48,51)(49,50)(55,88)(56,87)(57,86)(58,85)(59,84)(60,83)(61,82)(62,81)(63,80)(64,79)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(89,132)(90,131)(91,130)(92,129)(93,128)(94,127)(95,126)(96,125)(97,124)(98,123)(99,122)(100,121)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111) );

G=PermutationGroup([[(1,89,50),(2,90,51),(3,91,52),(4,92,53),(5,93,54),(6,94,55),(7,95,56),(8,96,57),(9,97,58),(10,98,59),(11,99,60),(12,100,61),(13,101,62),(14,102,63),(15,103,64),(16,104,65),(17,105,66),(18,106,67),(19,107,68),(20,108,69),(21,109,70),(22,110,71),(23,111,72),(24,112,73),(25,113,74),(26,114,75),(27,115,76),(28,116,77),(29,117,78),(30,118,79),(31,119,80),(32,120,81),(33,121,82),(34,122,83),(35,123,84),(36,124,85),(37,125,86),(38,126,87),(39,127,88),(40,128,45),(41,129,46),(42,130,47),(43,131,48),(44,132,49)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,24),(22,23),(45,54),(46,53),(47,52),(48,51),(49,50),(55,88),(56,87),(57,86),(58,85),(59,84),(60,83),(61,82),(62,81),(63,80),(64,79),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(89,132),(90,131),(91,130),(92,129),(93,128),(94,127),(95,126),(96,125),(97,124),(98,123),(99,122),(100,121),(101,120),(102,119),(103,118),(104,117),(105,116),(106,115),(107,114),(108,113),(109,112),(110,111)]])

75 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F11A···11E12A12B22A···22E33A···33J44A···44J66A···66J132A···132T
order122233466666611···11121222···2233···3344···4466···66132···132
size11222211211222222222···2222···22···22···22···22···2

75 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6D4D11C3×D4D22C3×D11D44C6×D11C3×D44
kernelC3×D44C132C6×D11D44C44D22C33C12C11C6C4C3C2C1
# reps112224152510101020

Matrix representation of C3×D44 in GL2(𝔽43) generated by

360
036
,
518
4041
,
4142
32
G:=sub<GL(2,GF(43))| [36,0,0,36],[5,40,18,41],[41,3,42,2] >;

C3×D44 in GAP, Magma, Sage, TeX

C_3\times D_{44}
% in TeX

G:=Group("C3xD44");
// GroupNames label

G:=SmallGroup(264,15);
// by ID

G=gap.SmallGroup(264,15);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-11,141,66,6004]);
// Polycyclic

G:=Group<a,b,c|a^3=b^44=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×D44 in TeX

׿
×
𝔽