# Extensions 1→N→G→Q→1 with N=C23 and Q=C2×C18

Direct product G=N×Q with N=C23 and Q=C2×C18
dρLabelID
C24×C18288C2^4xC18288,840

Semidirect products G=N:Q with N=C23 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C231(C2×C18) = C9×C22≀C2φ: C2×C18/C9C22 ⊆ Aut C2372C2^3:1(C2xC18)288,170
C232(C2×C18) = C9×2+ 1+4φ: C2×C18/C9C22 ⊆ Aut C23724C2^3:2(C2xC18)288,371
C233(C2×C18) = C23×C3.A4φ: C2×C18/C2×C6C3 ⊆ Aut C2372C2^3:3(C2xC18)288,837
C234(C2×C18) = D4×C2×C18φ: C2×C18/C18C2 ⊆ Aut C23144C2^3:4(C2xC18)288,368

Non-split extensions G=N.Q with N=C23 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
C23.1(C2×C18) = C9×C23⋊C4φ: C2×C18/C9C22 ⊆ Aut C23724C2^3.1(C2xC18)288,49
C23.2(C2×C18) = C9×C4⋊D4φ: C2×C18/C9C22 ⊆ Aut C23144C2^3.2(C2xC18)288,171
C23.3(C2×C18) = C9×C22.D4φ: C2×C18/C9C22 ⊆ Aut C23144C2^3.3(C2xC18)288,173
C23.4(C2×C18) = C9×C4.4D4φ: C2×C18/C9C22 ⊆ Aut C23144C2^3.4(C2xC18)288,174
C23.5(C2×C18) = C9×C422C2φ: C2×C18/C9C22 ⊆ Aut C23144C2^3.5(C2xC18)288,176
C23.6(C2×C18) = C9×C41D4φ: C2×C18/C9C22 ⊆ Aut C23144C2^3.6(C2xC18)288,177
C23.7(C2×C18) = C2×C4×C3.A4φ: C2×C18/C2×C6C3 ⊆ Aut C2372C2^3.7(C2xC18)288,343
C23.8(C2×C18) = D4×C3.A4φ: C2×C18/C2×C6C3 ⊆ Aut C23366C2^3.8(C2xC18)288,344
C23.9(C2×C18) = Q8×C3.A4φ: C2×C18/C2×C6C3 ⊆ Aut C23726C2^3.9(C2xC18)288,346
C23.10(C2×C18) = C22⋊C4×C18φ: C2×C18/C18C2 ⊆ Aut C23144C2^3.10(C2xC18)288,165
C23.11(C2×C18) = C9×C42⋊C2φ: C2×C18/C18C2 ⊆ Aut C23144C2^3.11(C2xC18)288,167
C23.12(C2×C18) = D4×C36φ: C2×C18/C18C2 ⊆ Aut C23144C2^3.12(C2xC18)288,168
C23.13(C2×C18) = C9×C22⋊Q8φ: C2×C18/C18C2 ⊆ Aut C23144C2^3.13(C2xC18)288,172
C23.14(C2×C18) = C4○D4×C18φ: C2×C18/C18C2 ⊆ Aut C23144C2^3.14(C2xC18)288,370
C23.15(C2×C18) = C9×C2.C42central extension (φ=1)288C2^3.15(C2xC18)288,45
C23.16(C2×C18) = C4⋊C4×C18central extension (φ=1)288C2^3.16(C2xC18)288,166
C23.17(C2×C18) = Q8×C2×C18central extension (φ=1)288C2^3.17(C2xC18)288,369

׿
×
𝔽