Copied to
clipboard

G = D4×C36order 288 = 25·32

Direct product of C36 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C36, C427C18, C4⋊C47C18, C3.(D4×C12), C41(C2×C36), C366(C2×C4), (D4×C12).C3, (C4×C36)⋊11C2, C2.3(D4×C18), C6.66(C6×D4), C22⋊C46C18, (C4×C12).16C6, C222(C2×C36), (C22×C4)⋊4C18, (C22×C36)⋊4C2, (C3×D4).4C12, (C2×D4).7C18, (C6×D4).26C6, C18.66(C2×D4), C12.86(C3×D4), C12.33(C2×C12), (D4×C18).14C2, C2.4(C22×C36), C18.39(C4○D4), C6.32(C22×C12), (C2×C18).73C23, (C22×C12).13C6, C23.12(C2×C18), C18.32(C22×C4), (C2×C36).120C22, C22.6(C22×C18), (C22×C18).26C22, (C9×C4⋊C4)⋊16C2, (C2×C18)⋊4(C2×C4), C2.2(C9×C4○D4), (C3×C4⋊C4).25C6, (C2×C6).9(C2×C12), C6.39(C3×C4○D4), (C9×C22⋊C4)⋊14C2, (C2×C4).18(C2×C18), (C2×C12).81(C2×C6), (C3×C22⋊C4).15C6, (C2×C6).78(C22×C6), (C22×C6).44(C2×C6), SmallGroup(288,168)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C36
C1C3C6C2×C6C2×C18C2×C36C9×C22⋊C4 — D4×C36
C1C2 — D4×C36
C1C2×C36 — D4×C36

Generators and relations for D4×C36
 G = < a,b,c | a36=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 186 in 141 conjugacy classes, 96 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C9, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C18, C18, C2×C12, C2×C12, C2×C12, C3×D4, C22×C6, C4×D4, C36, C36, C2×C18, C2×C18, C2×C18, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C2×C36, C2×C36, C2×C36, D4×C9, C22×C18, D4×C12, C4×C36, C9×C22⋊C4, C9×C4⋊C4, C22×C36, D4×C18, D4×C36
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C9, C12, C2×C6, C22×C4, C2×D4, C4○D4, C18, C2×C12, C3×D4, C22×C6, C4×D4, C36, C2×C18, C22×C12, C6×D4, C3×C4○D4, C2×C36, D4×C9, C22×C18, D4×C12, C22×C36, D4×C18, C9×C4○D4, D4×C36

Smallest permutation representation of D4×C36
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 127 80 69)(2 128 81 70)(3 129 82 71)(4 130 83 72)(5 131 84 37)(6 132 85 38)(7 133 86 39)(8 134 87 40)(9 135 88 41)(10 136 89 42)(11 137 90 43)(12 138 91 44)(13 139 92 45)(14 140 93 46)(15 141 94 47)(16 142 95 48)(17 143 96 49)(18 144 97 50)(19 109 98 51)(20 110 99 52)(21 111 100 53)(22 112 101 54)(23 113 102 55)(24 114 103 56)(25 115 104 57)(26 116 105 58)(27 117 106 59)(28 118 107 60)(29 119 108 61)(30 120 73 62)(31 121 74 63)(32 122 75 64)(33 123 76 65)(34 124 77 66)(35 125 78 67)(36 126 79 68)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 37)(24 38)(25 39)(26 40)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(73 138)(74 139)(75 140)(76 141)(77 142)(78 143)(79 144)(80 109)(81 110)(82 111)(83 112)(84 113)(85 114)(86 115)(87 116)(88 117)(89 118)(90 119)(91 120)(92 121)(93 122)(94 123)(95 124)(96 125)(97 126)(98 127)(99 128)(100 129)(101 130)(102 131)(103 132)(104 133)(105 134)(106 135)(107 136)(108 137)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,127,80,69)(2,128,81,70)(3,129,82,71)(4,130,83,72)(5,131,84,37)(6,132,85,38)(7,133,86,39)(8,134,87,40)(9,135,88,41)(10,136,89,42)(11,137,90,43)(12,138,91,44)(13,139,92,45)(14,140,93,46)(15,141,94,47)(16,142,95,48)(17,143,96,49)(18,144,97,50)(19,109,98,51)(20,110,99,52)(21,111,100,53)(22,112,101,54)(23,113,102,55)(24,114,103,56)(25,115,104,57)(26,116,105,58)(27,117,106,59)(28,118,107,60)(29,119,108,61)(30,120,73,62)(31,121,74,63)(32,122,75,64)(33,123,76,65)(34,124,77,66)(35,125,78,67)(36,126,79,68), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(73,138)(74,139)(75,140)(76,141)(77,142)(78,143)(79,144)(80,109)(81,110)(82,111)(83,112)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,127,80,69)(2,128,81,70)(3,129,82,71)(4,130,83,72)(5,131,84,37)(6,132,85,38)(7,133,86,39)(8,134,87,40)(9,135,88,41)(10,136,89,42)(11,137,90,43)(12,138,91,44)(13,139,92,45)(14,140,93,46)(15,141,94,47)(16,142,95,48)(17,143,96,49)(18,144,97,50)(19,109,98,51)(20,110,99,52)(21,111,100,53)(22,112,101,54)(23,113,102,55)(24,114,103,56)(25,115,104,57)(26,116,105,58)(27,117,106,59)(28,118,107,60)(29,119,108,61)(30,120,73,62)(31,121,74,63)(32,122,75,64)(33,123,76,65)(34,124,77,66)(35,125,78,67)(36,126,79,68), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,37)(24,38)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(73,138)(74,139)(75,140)(76,141)(77,142)(78,143)(79,144)(80,109)(81,110)(82,111)(83,112)(84,113)(85,114)(86,115)(87,116)(88,117)(89,118)(90,119)(91,120)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,127,80,69),(2,128,81,70),(3,129,82,71),(4,130,83,72),(5,131,84,37),(6,132,85,38),(7,133,86,39),(8,134,87,40),(9,135,88,41),(10,136,89,42),(11,137,90,43),(12,138,91,44),(13,139,92,45),(14,140,93,46),(15,141,94,47),(16,142,95,48),(17,143,96,49),(18,144,97,50),(19,109,98,51),(20,110,99,52),(21,111,100,53),(22,112,101,54),(23,113,102,55),(24,114,103,56),(25,115,104,57),(26,116,105,58),(27,117,106,59),(28,118,107,60),(29,119,108,61),(30,120,73,62),(31,121,74,63),(32,122,75,64),(33,123,76,65),(34,124,77,66),(35,125,78,67),(36,126,79,68)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,37),(24,38),(25,39),(26,40),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(73,138),(74,139),(75,140),(76,141),(77,142),(78,143),(79,144),(80,109),(81,110),(82,111),(83,112),(84,113),(85,114),(86,115),(87,116),(88,117),(89,118),(90,119),(91,120),(92,121),(93,122),(94,123),(95,124),(96,125),(97,126),(98,127),(99,128),(100,129),(101,130),(102,131),(103,132),(104,133),(105,134),(106,135),(107,136),(108,137)]])

180 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E···4L6A···6F6G···6N9A···9F12A···12H12I···12X18A···18R18S···18AP36A···36X36Y···36BT
order122222223344444···46···66···69···912···1212···1218···1818···1836···3636···36
size111122221111112···21···12···21···11···12···21···12···21···12···2

180 irreducible representations

dim111111111111111111111222222
type+++++++
imageC1C2C2C2C2C2C3C4C6C6C6C6C6C9C12C18C18C18C18C18C36D4C4○D4C3×D4C3×C4○D4D4×C9C9×C4○D4
kernelD4×C36C4×C36C9×C22⋊C4C9×C4⋊C4C22×C36D4×C18D4×C12D4×C9C4×C12C3×C22⋊C4C3×C4⋊C4C22×C12C6×D4C4×D4C3×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C36C18C12C6C4C2
# reps112121282424261661261264822441212

Matrix representation of D4×C36 in GL4(𝔽37) generated by

30000
0800
00270
00027
,
36000
0100
001631
001221
,
1000
0100
001631
002421
G:=sub<GL(4,GF(37))| [30,0,0,0,0,8,0,0,0,0,27,0,0,0,0,27],[36,0,0,0,0,1,0,0,0,0,16,12,0,0,31,21],[1,0,0,0,0,1,0,0,0,0,16,24,0,0,31,21] >;

D4×C36 in GAP, Magma, Sage, TeX

D_4\times C_{36}
% in TeX

G:=Group("D4xC36");
// GroupNames label

G:=SmallGroup(288,168);
// by ID

G=gap.SmallGroup(288,168);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,365,268,360]);
// Polycyclic

G:=Group<a,b,c|a^36=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽