Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C12

Direct product G=N×Q with N=C3×D4 and Q=C12

Semidirect products G=N:Q with N=C3×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1C12 = C3×D4⋊Dic3φ: C12/C6C2 ⊆ Out C3×D448(C3xD4):1C12288,266
(C3×D4)⋊2C12 = C3×Q83Dic3φ: C12/C6C2 ⊆ Out C3×D4484(C3xD4):2C12288,271
(C3×D4)⋊3C12 = C3×D4×Dic3φ: C12/C6C2 ⊆ Out C3×D448(C3xD4):3C12288,705
(C3×D4)⋊4C12 = C32×D4⋊C4φ: C12/C6C2 ⊆ Out C3×D4144(C3xD4):4C12288,320
(C3×D4)⋊5C12 = C32×C4≀C2φ: C12/C6C2 ⊆ Out C3×D472(C3xD4):5C12288,322

Non-split extensions G=N.Q with N=C3×D4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×D4).1C12 = C3×D4.Dic3φ: C12/C6C2 ⊆ Out C3×D4484(C3xD4).1C12288,719
(C3×D4).2C12 = C9×D4⋊C4φ: C12/C6C2 ⊆ Out C3×D4144(C3xD4).2C12288,52
(C3×D4).3C12 = C9×C4≀C2φ: C12/C6C2 ⊆ Out C3×D4722(C3xD4).3C12288,54
(C3×D4).4C12 = D4×C36φ: trivial image144(C3xD4).4C12288,168
(C3×D4).5C12 = C9×C8○D4φ: trivial image1442(C3xD4).5C12288,181
(C3×D4).6C12 = C32×C8○D4φ: trivial image144(C3xD4).6C12288,828