Extensions 1→N→G→Q→1 with N=C3xD4 and Q=C12

Direct product G=NxQ with N=C3xD4 and Q=C12
dρLabelID
D4xC3xC12144D4xC3xC12288,815

Semidirect products G=N:Q with N=C3xD4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3xD4):1C12 = C3xD4:Dic3φ: C12/C6C2 ⊆ Out C3xD448(C3xD4):1C12288,266
(C3xD4):2C12 = C3xQ8:3Dic3φ: C12/C6C2 ⊆ Out C3xD4484(C3xD4):2C12288,271
(C3xD4):3C12 = C3xD4xDic3φ: C12/C6C2 ⊆ Out C3xD448(C3xD4):3C12288,705
(C3xD4):4C12 = C32xD4:C4φ: C12/C6C2 ⊆ Out C3xD4144(C3xD4):4C12288,320
(C3xD4):5C12 = C32xC4wrC2φ: C12/C6C2 ⊆ Out C3xD472(C3xD4):5C12288,322

Non-split extensions G=N.Q with N=C3xD4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3xD4).1C12 = C3xD4.Dic3φ: C12/C6C2 ⊆ Out C3xD4484(C3xD4).1C12288,719
(C3xD4).2C12 = C9xD4:C4φ: C12/C6C2 ⊆ Out C3xD4144(C3xD4).2C12288,52
(C3xD4).3C12 = C9xC4wrC2φ: C12/C6C2 ⊆ Out C3xD4722(C3xD4).3C12288,54
(C3xD4).4C12 = D4xC36φ: trivial image144(C3xD4).4C12288,168
(C3xD4).5C12 = C9xC8oD4φ: trivial image1442(C3xD4).5C12288,181
(C3xD4).6C12 = C32xC8oD4φ: trivial image144(C3xD4).6C12288,828

׿
x
:
Z
F
o
wr
Q
<