Extensions 1→N→G→Q→1 with N=C3⋊D4 and Q=D6

Direct product G=N×Q with N=C3⋊D4 and Q=D6
dρLabelID
C2×S3×C3⋊D448C2xS3xC3:D4288,976

Semidirect products G=N:Q with N=C3⋊D4 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊D41D6 = S32×D4φ: D6/S3C2 ⊆ Out C3⋊D4248+C3:D4:1D6288,958
C3⋊D42D6 = S3×D42S3φ: D6/S3C2 ⊆ Out C3⋊D4488-C3:D4:2D6288,959
C3⋊D43D6 = Dic612D6φ: D6/S3C2 ⊆ Out C3⋊D4248+C3:D4:3D6288,960
C3⋊D44D6 = D1212D6φ: D6/S3C2 ⊆ Out C3⋊D4488-C3:D4:4D6288,961
C3⋊D45D6 = D1213D6φ: D6/S3C2 ⊆ Out C3⋊D4248+C3:D4:5D6288,962
C3⋊D46D6 = D1223D6φ: D6/C6C2 ⊆ Out C3⋊D4244C3:D4:6D6288,954
C3⋊D47D6 = D1227D6φ: D6/C6C2 ⊆ Out C3⋊D4244+C3:D4:7D6288,956
C3⋊D48D6 = C2×D6.4D6φ: D6/C6C2 ⊆ Out C3⋊D448C3:D4:8D6288,971
C3⋊D49D6 = C2×Dic3⋊D6φ: D6/C6C2 ⊆ Out C3⋊D424C3:D4:9D6288,977
C3⋊D410D6 = C32⋊2+ 1+4φ: D6/C6C2 ⊆ Out C3⋊D4244C3:D4:10D6288,978
C3⋊D411D6 = S3×C4○D12φ: trivial image484C3:D4:11D6288,953
C3⋊D412D6 = D1224D6φ: trivial image484C3:D4:12D6288,955
C3⋊D413D6 = C2×D6.3D6φ: trivial image48C3:D4:13D6288,970

Non-split extensions G=N.Q with N=C3⋊D4 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊D4.1D6 = Dic6.24D6φ: D6/S3C2 ⊆ Out C3⋊D4488-C3:D4.1D6288,957
C3⋊D4.2D6 = D12.34D6φ: D6/C6C2 ⊆ Out C3⋊D4484-C3:D4.2D6288,946
C3⋊D4.3D6 = D12.33D6φ: trivial image484C3:D4.3D6288,945

׿
×
𝔽