Extensions 1→N→G→Q→1 with N=C6 and Q=C4⋊Dic3

Direct product G=N×Q with N=C6 and Q=C4⋊Dic3
dρLabelID
C6×C4⋊Dic396C6xC4:Dic3288,696

Semidirect products G=N:Q with N=C6 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C61(C4⋊Dic3) = C2×Dic3⋊Dic3φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C696C6:1(C4:Dic3)288,613
C62(C4⋊Dic3) = C2×C12⋊Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6:2(C4:Dic3)288,782

Non-split extensions G=N.Q with N=C6 and Q=C4⋊Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C4⋊Dic3) = C12.81D12φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C696C6.1(C4:Dic3)288,219
C6.2(C4⋊Dic3) = C12.Dic6φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C696C6.2(C4:Dic3)288,221
C6.3(C4⋊Dic3) = C6.18D24φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C696C6.3(C4:Dic3)288,223
C6.4(C4⋊Dic3) = C12.82D12φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C6484C6.4(C4:Dic3)288,225
C6.5(C4⋊Dic3) = C62.6Q8φ: C4⋊Dic3/C2×Dic3C2 ⊆ Aut C696C6.5(C4:Dic3)288,227
C6.6(C4⋊Dic3) = C36⋊C8φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.6(C4:Dic3)288,11
C6.7(C4⋊Dic3) = C72.C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C61442C6.7(C4:Dic3)288,20
C6.8(C4⋊Dic3) = C8⋊Dic9φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.8(C4:Dic3)288,25
C6.9(C4⋊Dic3) = C721C4φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.9(C4:Dic3)288,26
C6.10(C4⋊Dic3) = C18.C42φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.10(C4:Dic3)288,38
C6.11(C4⋊Dic3) = C2×C4⋊Dic9φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.11(C4:Dic3)288,135
C6.12(C4⋊Dic3) = C12.57D12φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.12(C4:Dic3)288,279
C6.13(C4⋊Dic3) = C242Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.13(C4:Dic3)288,292
C6.14(C4⋊Dic3) = C241Dic3φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.14(C4:Dic3)288,293
C6.15(C4⋊Dic3) = C12.59D12φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6144C6.15(C4:Dic3)288,294
C6.16(C4⋊Dic3) = C62.15Q8φ: C4⋊Dic3/C2×C12C2 ⊆ Aut C6288C6.16(C4:Dic3)288,306
C6.17(C4⋊Dic3) = C3×C12⋊C8central extension (φ=1)96C6.17(C4:Dic3)288,238
C6.18(C4⋊Dic3) = C3×C8⋊Dic3central extension (φ=1)96C6.18(C4:Dic3)288,251
C6.19(C4⋊Dic3) = C3×C241C4central extension (φ=1)96C6.19(C4:Dic3)288,252
C6.20(C4⋊Dic3) = C3×C24.C4central extension (φ=1)482C6.20(C4:Dic3)288,253
C6.21(C4⋊Dic3) = C3×C6.C42central extension (φ=1)96C6.21(C4:Dic3)288,265

׿
×
𝔽