extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4⋊Dic3) = C12.81D12 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.1(C4:Dic3) | 288,219 |
C6.2(C4⋊Dic3) = C12.Dic6 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.2(C4:Dic3) | 288,221 |
C6.3(C4⋊Dic3) = C6.18D24 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.3(C4:Dic3) | 288,223 |
C6.4(C4⋊Dic3) = C12.82D12 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C4:Dic3) | 288,225 |
C6.5(C4⋊Dic3) = C62.6Q8 | φ: C4⋊Dic3/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.5(C4:Dic3) | 288,227 |
C6.6(C4⋊Dic3) = C36⋊C8 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.6(C4:Dic3) | 288,11 |
C6.7(C4⋊Dic3) = C72.C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 144 | 2 | C6.7(C4:Dic3) | 288,20 |
C6.8(C4⋊Dic3) = C8⋊Dic9 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.8(C4:Dic3) | 288,25 |
C6.9(C4⋊Dic3) = C72⋊1C4 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.9(C4:Dic3) | 288,26 |
C6.10(C4⋊Dic3) = C18.C42 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.10(C4:Dic3) | 288,38 |
C6.11(C4⋊Dic3) = C2×C4⋊Dic9 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.11(C4:Dic3) | 288,135 |
C6.12(C4⋊Dic3) = C12.57D12 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.12(C4:Dic3) | 288,279 |
C6.13(C4⋊Dic3) = C24⋊2Dic3 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.13(C4:Dic3) | 288,292 |
C6.14(C4⋊Dic3) = C24⋊1Dic3 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.14(C4:Dic3) | 288,293 |
C6.15(C4⋊Dic3) = C12.59D12 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.15(C4:Dic3) | 288,294 |
C6.16(C4⋊Dic3) = C62.15Q8 | φ: C4⋊Dic3/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.16(C4:Dic3) | 288,306 |
C6.17(C4⋊Dic3) = C3×C12⋊C8 | central extension (φ=1) | 96 | | C6.17(C4:Dic3) | 288,238 |
C6.18(C4⋊Dic3) = C3×C8⋊Dic3 | central extension (φ=1) | 96 | | C6.18(C4:Dic3) | 288,251 |
C6.19(C4⋊Dic3) = C3×C24⋊1C4 | central extension (φ=1) | 96 | | C6.19(C4:Dic3) | 288,252 |
C6.20(C4⋊Dic3) = C3×C24.C4 | central extension (φ=1) | 48 | 2 | C6.20(C4:Dic3) | 288,253 |
C6.21(C4⋊Dic3) = C3×C6.C42 | central extension (φ=1) | 96 | | C6.21(C4:Dic3) | 288,265 |