# Extensions 1→N→G→Q→1 with N=D4 and Q=S3×C6

Direct product G=N×Q with N=D4 and Q=S3×C6
dρLabelID
S3×C6×D448S3xC6xD4288,992

Semidirect products G=N:Q with N=D4 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
D41(S3×C6) = C3×S3×D8φ: S3×C6/C3×S3C2 ⊆ Out D4484D4:1(S3xC6)288,681
D42(S3×C6) = C3×D8⋊S3φ: S3×C6/C3×S3C2 ⊆ Out D4484D4:2(S3xC6)288,682
D43(S3×C6) = C6×D4⋊S3φ: S3×C6/C3×C6C2 ⊆ Out D448D4:3(S3xC6)288,702
D44(S3×C6) = C3×D4⋊D6φ: S3×C6/C3×C6C2 ⊆ Out D4484D4:4(S3xC6)288,720
D45(S3×C6) = C6×D42S3φ: trivial image48D4:5(S3xC6)288,993
D46(S3×C6) = C3×D46D6φ: trivial image244D4:6(S3xC6)288,994
D47(S3×C6) = C3×S3×C4○D4φ: trivial image484D4:7(S3xC6)288,998
D48(S3×C6) = C3×D4○D12φ: trivial image484D4:8(S3xC6)288,999

Non-split extensions G=N.Q with N=D4 and Q=S3×C6
extensionφ:Q→Out NdρLabelID
D4.1(S3×C6) = C3×D83S3φ: S3×C6/C3×S3C2 ⊆ Out D4484D4.1(S3xC6)288,683
D4.2(S3×C6) = C3×S3×SD16φ: S3×C6/C3×S3C2 ⊆ Out D4484D4.2(S3xC6)288,684
D4.3(S3×C6) = C3×Q83D6φ: S3×C6/C3×S3C2 ⊆ Out D4484D4.3(S3xC6)288,685
D4.4(S3×C6) = C3×D4.D6φ: S3×C6/C3×S3C2 ⊆ Out D4484D4.4(S3xC6)288,686
D4.5(S3×C6) = C3×Q8.7D6φ: S3×C6/C3×S3C2 ⊆ Out D4484D4.5(S3xC6)288,687
D4.6(S3×C6) = C3×D126C22φ: S3×C6/C3×C6C2 ⊆ Out D4244D4.6(S3xC6)288,703
D4.7(S3×C6) = C6×D4.S3φ: S3×C6/C3×C6C2 ⊆ Out D448D4.7(S3xC6)288,704
D4.8(S3×C6) = C3×Q8.13D6φ: S3×C6/C3×C6C2 ⊆ Out D4484D4.8(S3xC6)288,721
D4.9(S3×C6) = C3×Q8.14D6φ: S3×C6/C3×C6C2 ⊆ Out D4484D4.9(S3xC6)288,722
D4.10(S3×C6) = C3×Q8○D12φ: trivial image484D4.10(S3xC6)288,1000

׿
×
𝔽