Copied to
clipboard

G = C3×Q8.14D6order 288 = 25·32

Direct product of C3 and Q8.14D6

direct product, metabelian, supersoluble, monomial

Aliases: C3×Q8.14D6, C62.68D4, D4.S36C6, C3⋊Q166C6, D4.9(S3×C6), C6.61(C6×D4), (C3×D4).49D6, C12.59(C3×D4), Q8.19(S3×C6), (C3×Q8).74D6, (C2×Dic6)⋊11C6, (C6×Dic6)⋊16C2, (C2×C12).248D6, (C3×C12).161D4, C4.Dic310C6, (C3×C12).90C23, C12.19(C22×C6), Dic6.12(C2×C6), C12.142(C3⋊D4), C12.170(C22×S3), (C6×C12).133C22, C3224(C8.C22), (C3×Dic6).42C22, (D4×C32).25C22, (Q8×C32).26C22, C3⋊C8.4(C2×C6), C4.19(S3×C2×C6), (C2×C4).21(S3×C6), C4○D4.6(C3×S3), (C3×D4).9(C2×C6), (C2×C6).11(C3×D4), C4.25(C3×C3⋊D4), C2.25(C6×C3⋊D4), C35(C3×C8.C22), (C2×C12).44(C2×C6), (C3×D4.S3)⋊12C2, (C3×C4○D4).21S3, (C3×C4○D4).11C6, (C3×C3⋊Q16)⋊14C2, (C3×C6).269(C2×D4), C6.162(C2×C3⋊D4), (C3×C3⋊C8).23C22, (C3×C4.Dic3)⋊8C2, (C3×Q8).21(C2×C6), C22.6(C3×C3⋊D4), (C2×C6).47(C3⋊D4), (C32×C4○D4).4C2, SmallGroup(288,722)

Series: Derived Chief Lower central Upper central

C1C12 — C3×Q8.14D6
C1C3C6C12C3×C12C3×Dic6C6×Dic6 — C3×Q8.14D6
C3C6C12 — C3×Q8.14D6
C1C6C2×C12C3×C4○D4

Generators and relations for C3×Q8.14D6
 G = < a,b,c,d,e | a3=b4=d6=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=b2c, ece-1=bc, ede-1=d-1 >

Subgroups: 290 in 140 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C32, Dic3, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C8.C22, C3×Dic3, C3×C12, C3×C12, C62, C62, C4.Dic3, D4.S3, C3⋊Q16, C3×M4(2), C3×SD16, C3×Q16, C2×Dic6, C6×Q8, C3×C4○D4, C3×C4○D4, C3×C3⋊C8, C3×Dic6, C3×Dic6, C6×Dic3, C6×C12, C6×C12, D4×C32, D4×C32, Q8×C32, Q8.14D6, C3×C8.C22, C3×C4.Dic3, C3×D4.S3, C3×C3⋊Q16, C6×Dic6, C32×C4○D4, C3×Q8.14D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C8.C22, S3×C6, C2×C3⋊D4, C6×D4, C3×C3⋊D4, S3×C2×C6, Q8.14D6, C3×C8.C22, C6×C3⋊D4, C3×Q8.14D6

Smallest permutation representation of C3×Q8.14D6
On 48 points
Generators in S48
(1 2 3)(4 6 5)(7 9 8)(10 12 11)(13 14 15)(16 18 17)(19 20 21)(22 23 24)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 41 39)(38 42 40)(43 45 47)(44 46 48)
(1 21 15 22)(2 19 13 23)(3 20 14 24)(4 7 16 10)(5 8 17 11)(6 9 18 12)(25 40 28 37)(26 41 29 38)(27 42 30 39)(31 43 34 46)(32 44 35 47)(33 45 36 48)
(1 39 15 42)(2 37 13 40)(3 41 14 38)(4 43 16 46)(5 47 17 44)(6 45 18 48)(7 31 10 34)(8 35 11 32)(9 33 12 36)(19 28 23 25)(20 26 24 29)(21 30 22 27)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 17 15 5)(2 16 13 4)(3 18 14 6)(7 23 10 19)(8 22 11 21)(9 24 12 20)(25 43 28 46)(26 48 29 45)(27 47 30 44)(31 37 34 40)(32 42 35 39)(33 41 36 38)

G:=sub<Sym(48)| (1,2,3)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,18,17)(19,20,21)(22,23,24)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,21,15,22)(2,19,13,23)(3,20,14,24)(4,7,16,10)(5,8,17,11)(6,9,18,12)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,43,34,46)(32,44,35,47)(33,45,36,48), (1,39,15,42)(2,37,13,40)(3,41,14,38)(4,43,16,46)(5,47,17,44)(6,45,18,48)(7,31,10,34)(8,35,11,32)(9,33,12,36)(19,28,23,25)(20,26,24,29)(21,30,22,27), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17,15,5)(2,16,13,4)(3,18,14,6)(7,23,10,19)(8,22,11,21)(9,24,12,20)(25,43,28,46)(26,48,29,45)(27,47,30,44)(31,37,34,40)(32,42,35,39)(33,41,36,38)>;

G:=Group( (1,2,3)(4,6,5)(7,9,8)(10,12,11)(13,14,15)(16,18,17)(19,20,21)(22,23,24)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,41,39)(38,42,40)(43,45,47)(44,46,48), (1,21,15,22)(2,19,13,23)(3,20,14,24)(4,7,16,10)(5,8,17,11)(6,9,18,12)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,43,34,46)(32,44,35,47)(33,45,36,48), (1,39,15,42)(2,37,13,40)(3,41,14,38)(4,43,16,46)(5,47,17,44)(6,45,18,48)(7,31,10,34)(8,35,11,32)(9,33,12,36)(19,28,23,25)(20,26,24,29)(21,30,22,27), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,17,15,5)(2,16,13,4)(3,18,14,6)(7,23,10,19)(8,22,11,21)(9,24,12,20)(25,43,28,46)(26,48,29,45)(27,47,30,44)(31,37,34,40)(32,42,35,39)(33,41,36,38) );

G=PermutationGroup([[(1,2,3),(4,6,5),(7,9,8),(10,12,11),(13,14,15),(16,18,17),(19,20,21),(22,23,24),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,41,39),(38,42,40),(43,45,47),(44,46,48)], [(1,21,15,22),(2,19,13,23),(3,20,14,24),(4,7,16,10),(5,8,17,11),(6,9,18,12),(25,40,28,37),(26,41,29,38),(27,42,30,39),(31,43,34,46),(32,44,35,47),(33,45,36,48)], [(1,39,15,42),(2,37,13,40),(3,41,14,38),(4,43,16,46),(5,47,17,44),(6,45,18,48),(7,31,10,34),(8,35,11,32),(9,33,12,36),(19,28,23,25),(20,26,24,29),(21,30,22,27)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,17,15,5),(2,16,13,4),(3,18,14,6),(7,23,10,19),(8,22,11,21),(9,24,12,20),(25,43,28,46),(26,48,29,45),(27,47,30,44),(31,37,34,40),(32,42,35,39),(33,41,36,38)]])

63 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E6A6B6C···6G6H···6R8A8B12A···12J12K···12U12V12W12X12Y24A24B24C24D
order12223333344444666···66···68812···1212···121212121224242424
size1124112222241212112···24···412122···24···41212121212121212

63 irreducible representations

dim11111111111122222222222222224444
type++++++++++++--
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D4D6D6D6C3×S3C3⋊D4C3×D4C3⋊D4C3×D4S3×C6S3×C6S3×C6C3×C3⋊D4C3×C3⋊D4C8.C22Q8.14D6C3×C8.C22C3×Q8.14D6
kernelC3×Q8.14D6C3×C4.Dic3C3×D4.S3C3×C3⋊Q16C6×Dic6C32×C4○D4Q8.14D6C4.Dic3D4.S3C3⋊Q16C2×Dic6C3×C4○D4C3×C4○D4C3×C12C62C2×C12C3×D4C3×Q8C4○D4C12C12C2×C6C2×C6C2×C4D4Q8C4C22C32C3C3C1
# reps11221122442211111122222222441224

Matrix representation of C3×Q8.14D6 in GL6(𝔽73)

800000
080000
001000
000100
000010
000001
,
100000
010000
0014800
0037200
00060722
005660721
,
100000
010000
0000720
00056070
001000
00048017
,
900000
64650000
001000
000100
0000720
00013072
,
65660000
980000
000400
0018000
000686112
0044686712

G:=sub<GL(6,GF(73))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,56,0,0,48,72,60,60,0,0,0,0,72,72,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,56,0,48,0,0,72,0,0,0,0,0,0,70,0,17],[9,64,0,0,0,0,0,65,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,13,0,0,0,0,72,0,0,0,0,0,0,72],[65,9,0,0,0,0,66,8,0,0,0,0,0,0,0,18,0,44,0,0,4,0,68,68,0,0,0,0,61,67,0,0,0,0,12,12] >;

C3×Q8.14D6 in GAP, Magma, Sage, TeX

C_3\times Q_8._{14}D_6
% in TeX

G:=Group("C3xQ8.14D6");
// GroupNames label

G:=SmallGroup(288,722);
// by ID

G=gap.SmallGroup(288,722);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,590,555,2524,648,102,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=d^6=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^2*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽