Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C3.A4

Direct product G=N×Q with N=C4 and Q=C2×C3.A4
dρLabelID
C2×C4×C3.A472C2xC4xC3.A4288,343

Semidirect products G=N:Q with N=C4 and Q=C2×C3.A4
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C3.A4) = D4×C3.A4φ: C2×C3.A4/C3.A4C2 ⊆ Aut C4366C4:(C2xC3.A4)288,344

Non-split extensions G=N.Q with N=C4 and Q=C2×C3.A4
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C3.A4) = Q8×C3.A4φ: C2×C3.A4/C3.A4C2 ⊆ Aut C4726C4.1(C2xC3.A4)288,346
C4.2(C2×C3.A4) = 2+ 1+4⋊C9φ: C2×C3.A4/C3.A4C2 ⊆ Aut C4724C4.2(C2xC3.A4)288,348
C4.3(C2×C3.A4) = 2- 1+4⋊C9φ: C2×C3.A4/C3.A4C2 ⊆ Aut C41444C4.3(C2xC3.A4)288,349
C4.4(C2×C3.A4) = C8×C3.A4central extension (φ=1)723C4.4(C2xC3.A4)288,76
C4.5(C2×C3.A4) = Q8.C36central extension (φ=1)1442C4.5(C2xC3.A4)288,77
C4.6(C2×C3.A4) = C2×Q8.C18central extension (φ=1)144C4.6(C2xC3.A4)288,347

׿
×
𝔽