Aliases: 2+ 1+4⋊1C9, C4○D4.C18, C12.9(C2×A4), Q8⋊C9⋊4C22, (C3×Q8).4A4, Q8.(C3.A4), C3.(Q8.A4), Q8.C18⋊3C2, Q8.2(C2×C18), C6.17(C22×A4), (C3×2+ 1+4).1C3, C4.2(C2×C3.A4), (C3×C4○D4).3C6, (C3×Q8).13(C2×C6), C2.6(C22×C3.A4), SmallGroup(288,348)
Series: Derived ►Chief ►Lower central ►Upper central
Q8 — 2+ 1+4⋊C9 |
Generators and relations for 2+ 1+4⋊C9
G = < a,b,c,d,e | a4=b2=d2=e9=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=a-1bcd, dcd=a2c, ece-1=a-1d, ede-1=cd >
Subgroups: 249 in 81 conjugacy classes, 27 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C2×C4, D4, Q8, C23, C9, C12, C12, C2×C6, C2×D4, C4○D4, C4○D4, C18, C2×C12, C3×D4, C3×Q8, C22×C6, 2+ 1+4, C36, C6×D4, C3×C4○D4, C3×C4○D4, Q8⋊C9, Q8×C9, C3×2+ 1+4, Q8.C18, 2+ 1+4⋊C9
Quotients: C1, C2, C3, C22, C6, C9, A4, C2×C6, C18, C2×A4, C3.A4, C2×C18, C22×A4, C2×C3.A4, Q8.A4, C22×C3.A4, 2+ 1+4⋊C9
(1 55 22 10)(2 56 23 11)(3 57 24 12)(4 58 25 13)(5 59 26 14)(6 60 27 15)(7 61 19 16)(8 62 20 17)(9 63 21 18)(28 37 50 64)(29 38 51 65)(30 39 52 66)(31 40 53 67)(32 41 54 68)(33 42 46 69)(34 43 47 70)(35 44 48 71)(36 45 49 72)
(1 50)(3 12)(4 53)(6 15)(7 47)(9 18)(10 64)(11 56)(13 67)(14 59)(16 70)(17 62)(19 34)(21 63)(22 28)(24 57)(25 31)(27 60)(29 51)(30 66)(32 54)(33 69)(35 48)(36 72)(37 55)(39 52)(40 58)(42 46)(43 61)(45 49)
(1 55 22 10)(2 38 23 65)(3 52 24 30)(4 58 25 13)(5 41 26 68)(6 46 27 33)(7 61 19 16)(8 44 20 71)(9 49 21 36)(11 29 56 51)(12 39 57 66)(14 32 59 54)(15 42 60 69)(17 35 62 48)(18 45 63 72)(28 64 50 37)(31 67 53 40)(34 70 47 43)
(1 50)(2 65)(3 24)(4 53)(5 68)(6 27)(7 47)(8 71)(9 21)(10 37)(11 51)(12 57)(13 40)(14 54)(15 60)(16 43)(17 48)(18 63)(19 34)(20 44)(22 28)(23 38)(25 31)(26 41)(29 56)(32 59)(35 62)(55 64)(58 67)(61 70)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,55,22,10)(2,56,23,11)(3,57,24,12)(4,58,25,13)(5,59,26,14)(6,60,27,15)(7,61,19,16)(8,62,20,17)(9,63,21,18)(28,37,50,64)(29,38,51,65)(30,39,52,66)(31,40,53,67)(32,41,54,68)(33,42,46,69)(34,43,47,70)(35,44,48,71)(36,45,49,72), (1,50)(3,12)(4,53)(6,15)(7,47)(9,18)(10,64)(11,56)(13,67)(14,59)(16,70)(17,62)(19,34)(21,63)(22,28)(24,57)(25,31)(27,60)(29,51)(30,66)(32,54)(33,69)(35,48)(36,72)(37,55)(39,52)(40,58)(42,46)(43,61)(45,49), (1,55,22,10)(2,38,23,65)(3,52,24,30)(4,58,25,13)(5,41,26,68)(6,46,27,33)(7,61,19,16)(8,44,20,71)(9,49,21,36)(11,29,56,51)(12,39,57,66)(14,32,59,54)(15,42,60,69)(17,35,62,48)(18,45,63,72)(28,64,50,37)(31,67,53,40)(34,70,47,43), (1,50)(2,65)(3,24)(4,53)(5,68)(6,27)(7,47)(8,71)(9,21)(10,37)(11,51)(12,57)(13,40)(14,54)(15,60)(16,43)(17,48)(18,63)(19,34)(20,44)(22,28)(23,38)(25,31)(26,41)(29,56)(32,59)(35,62)(55,64)(58,67)(61,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,55,22,10)(2,56,23,11)(3,57,24,12)(4,58,25,13)(5,59,26,14)(6,60,27,15)(7,61,19,16)(8,62,20,17)(9,63,21,18)(28,37,50,64)(29,38,51,65)(30,39,52,66)(31,40,53,67)(32,41,54,68)(33,42,46,69)(34,43,47,70)(35,44,48,71)(36,45,49,72), (1,50)(3,12)(4,53)(6,15)(7,47)(9,18)(10,64)(11,56)(13,67)(14,59)(16,70)(17,62)(19,34)(21,63)(22,28)(24,57)(25,31)(27,60)(29,51)(30,66)(32,54)(33,69)(35,48)(36,72)(37,55)(39,52)(40,58)(42,46)(43,61)(45,49), (1,55,22,10)(2,38,23,65)(3,52,24,30)(4,58,25,13)(5,41,26,68)(6,46,27,33)(7,61,19,16)(8,44,20,71)(9,49,21,36)(11,29,56,51)(12,39,57,66)(14,32,59,54)(15,42,60,69)(17,35,62,48)(18,45,63,72)(28,64,50,37)(31,67,53,40)(34,70,47,43), (1,50)(2,65)(3,24)(4,53)(5,68)(6,27)(7,47)(8,71)(9,21)(10,37)(11,51)(12,57)(13,40)(14,54)(15,60)(16,43)(17,48)(18,63)(19,34)(20,44)(22,28)(23,38)(25,31)(26,41)(29,56)(32,59)(35,62)(55,64)(58,67)(61,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,55,22,10),(2,56,23,11),(3,57,24,12),(4,58,25,13),(5,59,26,14),(6,60,27,15),(7,61,19,16),(8,62,20,17),(9,63,21,18),(28,37,50,64),(29,38,51,65),(30,39,52,66),(31,40,53,67),(32,41,54,68),(33,42,46,69),(34,43,47,70),(35,44,48,71),(36,45,49,72)], [(1,50),(3,12),(4,53),(6,15),(7,47),(9,18),(10,64),(11,56),(13,67),(14,59),(16,70),(17,62),(19,34),(21,63),(22,28),(24,57),(25,31),(27,60),(29,51),(30,66),(32,54),(33,69),(35,48),(36,72),(37,55),(39,52),(40,58),(42,46),(43,61),(45,49)], [(1,55,22,10),(2,38,23,65),(3,52,24,30),(4,58,25,13),(5,41,26,68),(6,46,27,33),(7,61,19,16),(8,44,20,71),(9,49,21,36),(11,29,56,51),(12,39,57,66),(14,32,59,54),(15,42,60,69),(17,35,62,48),(18,45,63,72),(28,64,50,37),(31,67,53,40),(34,70,47,43)], [(1,50),(2,65),(3,24),(4,53),(5,68),(6,27),(7,47),(8,71),(9,21),(10,37),(11,51),(12,57),(13,40),(14,54),(15,60),(16,43),(17,48),(18,63),(19,34),(20,44),(22,28),(23,38),(25,31),(26,41),(29,56),(32,59),(35,62),(55,64),(58,67),(61,70)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | ··· | 6H | 9A | ··· | 9F | 12A | ··· | 12F | 12G | 12H | 18A | ··· | 18F | 36A | ··· | 36R |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 6 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 6 | 1 | 1 | 6 | ··· | 6 | 4 | ··· | 4 | 2 | ··· | 2 | 6 | 6 | 4 | ··· | 4 | 8 | ··· | 8 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 |
type | + | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | A4 | C2×A4 | C3.A4 | C2×C3.A4 | Q8.A4 | Q8.A4 | 2+ 1+4⋊C9 |
kernel | 2+ 1+4⋊C9 | Q8.C18 | C3×2+ 1+4 | C3×C4○D4 | 2+ 1+4 | C4○D4 | C3×Q8 | C12 | Q8 | C4 | C3 | C3 | C1 |
# reps | 1 | 3 | 2 | 6 | 6 | 18 | 1 | 3 | 2 | 6 | 1 | 2 | 6 |
Matrix representation of 2+ 1+4⋊C9 ►in GL7(𝔽37)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 2 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 35 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 2 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 2 |
0 | 0 | 0 | 36 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 36 | 1 | 0 |
36 | 0 | 34 | 0 | 0 | 0 | 0 |
0 | 36 | 21 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 1 | 36 | 0 |
0 | 16 | 32 | 0 | 0 | 0 | 0 |
30 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 14 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 27 | 27 |
0 | 0 | 0 | 0 | 27 | 10 | 27 |
0 | 0 | 0 | 5 | 32 | 0 | 27 |
0 | 0 | 0 | 5 | 5 | 0 | 27 |
G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,0,2,0,0,1,0,0,0,0,35,36,0],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,3,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,3,0,36,0,0,0,0,0,0,0,0,36,36,0,0,0,0,36,0,0,36,0,0,0,2,0,0,1,0,0,0,0,2,1,0],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,34,21,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,36,0],[0,30,0,0,0,0,0,16,36,14,0,0,0,0,32,0,1,0,0,0,0,0,0,0,0,0,5,5,0,0,0,10,27,32,5,0,0,0,27,10,0,0,0,0,0,27,27,27,27] >;
2+ 1+4⋊C9 in GAP, Magma, Sage, TeX
2_+^{1+4}\rtimes C_9
% in TeX
G:=Group("ES+(2,2):C9");
// GroupNames label
G:=SmallGroup(288,348);
// by ID
G=gap.SmallGroup(288,348);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,2045,1016,79,648,172,1153,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^9=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=a^-1*b*c*d,d*c*d=a^2*c,e*c*e^-1=a^-1*d,e*d*e^-1=c*d>;
// generators/relations