Copied to
clipboard

G = 2+ 1+4⋊C9order 288 = 25·32

1st semidirect product of 2+ 1+4 and C9 acting via C9/C3=C3

non-abelian, soluble

Aliases: 2+ 1+41C9, C4○D4.C18, C12.9(C2×A4), Q8⋊C94C22, (C3×Q8).4A4, Q8.(C3.A4), C3.(Q8.A4), Q8.C183C2, Q8.2(C2×C18), C6.17(C22×A4), (C3×2+ 1+4).1C3, C4.2(C2×C3.A4), (C3×C4○D4).3C6, (C3×Q8).13(C2×C6), C2.6(C22×C3.A4), SmallGroup(288,348)

Series: Derived Chief Lower central Upper central

C1C2Q8 — 2+ 1+4⋊C9
C1C2Q8C3×Q8Q8⋊C9Q8.C18 — 2+ 1+4⋊C9
Q8 — 2+ 1+4⋊C9
C1C6C3×Q8

Generators and relations for 2+ 1+4⋊C9
 G = < a,b,c,d,e | a4=b2=d2=e9=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=a-1bcd, dcd=a2c, ece-1=a-1d, ede-1=cd >

Subgroups: 249 in 81 conjugacy classes, 27 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C2×C4, D4, Q8, C23, C9, C12, C12, C2×C6, C2×D4, C4○D4, C4○D4, C18, C2×C12, C3×D4, C3×Q8, C22×C6, 2+ 1+4, C36, C6×D4, C3×C4○D4, C3×C4○D4, Q8⋊C9, Q8×C9, C3×2+ 1+4, Q8.C18, 2+ 1+4⋊C9
Quotients: C1, C2, C3, C22, C6, C9, A4, C2×C6, C18, C2×A4, C3.A4, C2×C18, C22×A4, C2×C3.A4, Q8.A4, C22×C3.A4, 2+ 1+4⋊C9

Smallest permutation representation of 2+ 1+4⋊C9
On 72 points
Generators in S72
(1 55 22 10)(2 56 23 11)(3 57 24 12)(4 58 25 13)(5 59 26 14)(6 60 27 15)(7 61 19 16)(8 62 20 17)(9 63 21 18)(28 37 50 64)(29 38 51 65)(30 39 52 66)(31 40 53 67)(32 41 54 68)(33 42 46 69)(34 43 47 70)(35 44 48 71)(36 45 49 72)
(1 50)(3 12)(4 53)(6 15)(7 47)(9 18)(10 64)(11 56)(13 67)(14 59)(16 70)(17 62)(19 34)(21 63)(22 28)(24 57)(25 31)(27 60)(29 51)(30 66)(32 54)(33 69)(35 48)(36 72)(37 55)(39 52)(40 58)(42 46)(43 61)(45 49)
(1 55 22 10)(2 38 23 65)(3 52 24 30)(4 58 25 13)(5 41 26 68)(6 46 27 33)(7 61 19 16)(8 44 20 71)(9 49 21 36)(11 29 56 51)(12 39 57 66)(14 32 59 54)(15 42 60 69)(17 35 62 48)(18 45 63 72)(28 64 50 37)(31 67 53 40)(34 70 47 43)
(1 50)(2 65)(3 24)(4 53)(5 68)(6 27)(7 47)(8 71)(9 21)(10 37)(11 51)(12 57)(13 40)(14 54)(15 60)(16 43)(17 48)(18 63)(19 34)(20 44)(22 28)(23 38)(25 31)(26 41)(29 56)(32 59)(35 62)(55 64)(58 67)(61 70)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,55,22,10)(2,56,23,11)(3,57,24,12)(4,58,25,13)(5,59,26,14)(6,60,27,15)(7,61,19,16)(8,62,20,17)(9,63,21,18)(28,37,50,64)(29,38,51,65)(30,39,52,66)(31,40,53,67)(32,41,54,68)(33,42,46,69)(34,43,47,70)(35,44,48,71)(36,45,49,72), (1,50)(3,12)(4,53)(6,15)(7,47)(9,18)(10,64)(11,56)(13,67)(14,59)(16,70)(17,62)(19,34)(21,63)(22,28)(24,57)(25,31)(27,60)(29,51)(30,66)(32,54)(33,69)(35,48)(36,72)(37,55)(39,52)(40,58)(42,46)(43,61)(45,49), (1,55,22,10)(2,38,23,65)(3,52,24,30)(4,58,25,13)(5,41,26,68)(6,46,27,33)(7,61,19,16)(8,44,20,71)(9,49,21,36)(11,29,56,51)(12,39,57,66)(14,32,59,54)(15,42,60,69)(17,35,62,48)(18,45,63,72)(28,64,50,37)(31,67,53,40)(34,70,47,43), (1,50)(2,65)(3,24)(4,53)(5,68)(6,27)(7,47)(8,71)(9,21)(10,37)(11,51)(12,57)(13,40)(14,54)(15,60)(16,43)(17,48)(18,63)(19,34)(20,44)(22,28)(23,38)(25,31)(26,41)(29,56)(32,59)(35,62)(55,64)(58,67)(61,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)>;

G:=Group( (1,55,22,10)(2,56,23,11)(3,57,24,12)(4,58,25,13)(5,59,26,14)(6,60,27,15)(7,61,19,16)(8,62,20,17)(9,63,21,18)(28,37,50,64)(29,38,51,65)(30,39,52,66)(31,40,53,67)(32,41,54,68)(33,42,46,69)(34,43,47,70)(35,44,48,71)(36,45,49,72), (1,50)(3,12)(4,53)(6,15)(7,47)(9,18)(10,64)(11,56)(13,67)(14,59)(16,70)(17,62)(19,34)(21,63)(22,28)(24,57)(25,31)(27,60)(29,51)(30,66)(32,54)(33,69)(35,48)(36,72)(37,55)(39,52)(40,58)(42,46)(43,61)(45,49), (1,55,22,10)(2,38,23,65)(3,52,24,30)(4,58,25,13)(5,41,26,68)(6,46,27,33)(7,61,19,16)(8,44,20,71)(9,49,21,36)(11,29,56,51)(12,39,57,66)(14,32,59,54)(15,42,60,69)(17,35,62,48)(18,45,63,72)(28,64,50,37)(31,67,53,40)(34,70,47,43), (1,50)(2,65)(3,24)(4,53)(5,68)(6,27)(7,47)(8,71)(9,21)(10,37)(11,51)(12,57)(13,40)(14,54)(15,60)(16,43)(17,48)(18,63)(19,34)(20,44)(22,28)(23,38)(25,31)(26,41)(29,56)(32,59)(35,62)(55,64)(58,67)(61,70), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,55,22,10),(2,56,23,11),(3,57,24,12),(4,58,25,13),(5,59,26,14),(6,60,27,15),(7,61,19,16),(8,62,20,17),(9,63,21,18),(28,37,50,64),(29,38,51,65),(30,39,52,66),(31,40,53,67),(32,41,54,68),(33,42,46,69),(34,43,47,70),(35,44,48,71),(36,45,49,72)], [(1,50),(3,12),(4,53),(6,15),(7,47),(9,18),(10,64),(11,56),(13,67),(14,59),(16,70),(17,62),(19,34),(21,63),(22,28),(24,57),(25,31),(27,60),(29,51),(30,66),(32,54),(33,69),(35,48),(36,72),(37,55),(39,52),(40,58),(42,46),(43,61),(45,49)], [(1,55,22,10),(2,38,23,65),(3,52,24,30),(4,58,25,13),(5,41,26,68),(6,46,27,33),(7,61,19,16),(8,44,20,71),(9,49,21,36),(11,29,56,51),(12,39,57,66),(14,32,59,54),(15,42,60,69),(17,35,62,48),(18,45,63,72),(28,64,50,37),(31,67,53,40),(34,70,47,43)], [(1,50),(2,65),(3,24),(4,53),(5,68),(6,27),(7,47),(8,71),(9,21),(10,37),(11,51),(12,57),(13,40),(14,54),(15,60),(16,43),(17,48),(18,63),(19,34),(20,44),(22,28),(23,38),(25,31),(26,41),(29,56),(32,59),(35,62),(55,64),(58,67),(61,70)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)]])

57 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D6A6B6C···6H9A···9F12A···12F12G12H18A···18F36A···36R
order12222334444666···69···912···12121218···1836···36
size11666112226116···64···42···2664···48···8

57 irreducible representations

dim1111113333444
type+++++
imageC1C2C3C6C9C18A4C2×A4C3.A4C2×C3.A4Q8.A4Q8.A42+ 1+4⋊C9
kernel2+ 1+4⋊C9Q8.C18C3×2+ 1+4C3×C4○D42+ 1+4C4○D4C3×Q8C12Q8C4C3C3C1
# reps13266181326126

Matrix representation of 2+ 1+4⋊C9 in GL7(𝔽37)

1000000
0100000
0010000
00003620
00010035
00000036
0000010
,
1030000
03600000
00360000
0000100
0001000
0000001
0000010
,
1030000
03600000
00360000
00003620
00036002
00036001
00003610
,
360340000
036210000
0010000
0000100
0001000
00010036
00001360
,
016320000
303600000
01410000
0000102727
0000271027
000532027
00055027

G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,0,2,0,0,1,0,0,0,0,35,36,0],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,3,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,3,0,36,0,0,0,0,0,0,0,0,36,36,0,0,0,0,36,0,0,36,0,0,0,2,0,0,1,0,0,0,0,2,1,0],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,34,21,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,36,0],[0,30,0,0,0,0,0,16,36,14,0,0,0,0,32,0,1,0,0,0,0,0,0,0,0,0,5,5,0,0,0,10,27,32,5,0,0,0,27,10,0,0,0,0,0,27,27,27,27] >;

2+ 1+4⋊C9 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes C_9
% in TeX

G:=Group("ES+(2,2):C9");
// GroupNames label

G:=SmallGroup(288,348);
// by ID

G=gap.SmallGroup(288,348);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,2045,1016,79,648,172,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=e^9=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=a^-1*b*c*d,d*c*d=a^2*c,e*c*e^-1=a^-1*d,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽