# Extensions 1→N→G→Q→1 with N=C2×A4 and Q=D6

Direct product G=N×Q with N=C2×A4 and Q=D6
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037

Semidirect products G=N:Q with N=C2×A4 and Q=D6
extensionφ:Q→Out NdρLabelID
(C2×A4)⋊1D6 = C2×S3×S4φ: D6/S3C2 ⊆ Out C2×A4186+(C2xA4):1D6288,1028
(C2×A4)⋊2D6 = C22×C3⋊S4φ: D6/C6C2 ⊆ Out C2×A436(C2xA4):2D6288,1034

Non-split extensions G=N.Q with N=C2×A4 and Q=D6
extensionφ:Q→Out NdρLabelID
(C2×A4).1D6 = Dic3.S4φ: D6/S3C2 ⊆ Out C2×A4726-(C2xA4).1D6288,852
(C2×A4).2D6 = Dic3×S4φ: D6/S3C2 ⊆ Out C2×A4366-(C2xA4).2D6288,853
(C2×A4).3D6 = Dic32S4φ: D6/S3C2 ⊆ Out C2×A4366(C2xA4).3D6288,854
(C2×A4).4D6 = Dic3⋊S4φ: D6/S3C2 ⊆ Out C2×A4366(C2xA4).4D6288,855
(C2×A4).5D6 = S3×A4⋊C4φ: D6/S3C2 ⊆ Out C2×A4366(C2xA4).5D6288,856
(C2×A4).6D6 = D6⋊S4φ: D6/S3C2 ⊆ Out C2×A4366(C2xA4).6D6288,857
(C2×A4).7D6 = A4⋊D12φ: D6/S3C2 ⊆ Out C2×A4366+(C2xA4).7D6288,858
(C2×A4).8D6 = A4⋊Dic6φ: D6/C6C2 ⊆ Out C2×A4726-(C2xA4).8D6288,907
(C2×A4).9D6 = C4×C3⋊S4φ: D6/C6C2 ⊆ Out C2×A4366(C2xA4).9D6288,908
(C2×A4).10D6 = C12⋊S4φ: D6/C6C2 ⊆ Out C2×A4366+(C2xA4).10D6288,909
(C2×A4).11D6 = C2×C6.7S4φ: D6/C6C2 ⊆ Out C2×A472(C2xA4).11D6288,916
(C2×A4).12D6 = (C2×C6)⋊4S4φ: D6/C6C2 ⊆ Out C2×A4366(C2xA4).12D6288,917
(C2×A4).13D6 = A4×Dic6φ: trivial image726-(C2xA4).13D6288,918
(C2×A4).14D6 = C4×S3×A4φ: trivial image366(C2xA4).14D6288,919
(C2×A4).15D6 = A4×D12φ: trivial image366+(C2xA4).15D6288,920
(C2×A4).16D6 = C2×Dic3×A4φ: trivial image72(C2xA4).16D6288,927
(C2×A4).17D6 = A4×C3⋊D4φ: trivial image366(C2xA4).17D6288,928

׿
×
𝔽