Extensions 1→N→G→Q→1 with N=C6 and Q=D4.S3

Direct product G=NxQ with N=C6 and Q=D4.S3
dρLabelID
C6xD4.S348C6xD4.S3288,704

Semidirect products G=N:Q with N=C6 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C6:1(D4.S3) = C2xD12.S3φ: D4.S3/C3:C8C2 ⊆ Aut C696C6:1(D4.S3)288,476
C6:2(D4.S3) = C2xDic6:S3φ: D4.S3/Dic6C2 ⊆ Aut C696C6:2(D4.S3)288,474
C6:3(D4.S3) = C2xC32:9SD16φ: D4.S3/C3xD4C2 ⊆ Aut C6144C6:3(D4.S3)288,790

Non-split extensions G=N.Q with N=C6 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C6.1(D4.S3) = C6.16D24φ: D4.S3/C3:C8C2 ⊆ Aut C696C6.1(D4.S3)288,211
C6.2(D4.S3) = C12.73D12φ: D4.S3/C3:C8C2 ⊆ Aut C696C6.2(D4.S3)288,215
C6.3(D4.S3) = C12.Dic6φ: D4.S3/C3:C8C2 ⊆ Aut C696C6.3(D4.S3)288,221
C6.4(D4.S3) = D12:3Dic3φ: D4.S3/Dic6C2 ⊆ Aut C696C6.4(D4.S3)288,210
C6.5(D4.S3) = Dic6:Dic3φ: D4.S3/Dic6C2 ⊆ Aut C696C6.5(D4.S3)288,213
C6.6(D4.S3) = C12.6Dic6φ: D4.S3/Dic6C2 ⊆ Aut C696C6.6(D4.S3)288,222
C6.7(D4.S3) = C4.Dic18φ: D4.S3/C3xD4C2 ⊆ Aut C6288C6.7(D4.S3)288,15
C6.8(D4.S3) = C18.Q16φ: D4.S3/C3xD4C2 ⊆ Aut C6288C6.8(D4.S3)288,16
C6.9(D4.S3) = D4:Dic9φ: D4.S3/C3xD4C2 ⊆ Aut C6144C6.9(D4.S3)288,40
C6.10(D4.S3) = C2xD4.D9φ: D4.S3/C3xD4C2 ⊆ Aut C6144C6.10(D4.S3)288,141
C6.11(D4.S3) = C12.10Dic6φ: D4.S3/C3xD4C2 ⊆ Aut C6288C6.11(D4.S3)288,283
C6.12(D4.S3) = C62.114D4φ: D4.S3/C3xD4C2 ⊆ Aut C6288C6.12(D4.S3)288,285
C6.13(D4.S3) = C62.116D4φ: D4.S3/C3xD4C2 ⊆ Aut C6144C6.13(D4.S3)288,307
C6.14(D4.S3) = C3xC12.Q8central extension (φ=1)96C6.14(D4.S3)288,242
C6.15(D4.S3) = C3xC6.SD16central extension (φ=1)96C6.15(D4.S3)288,244
C6.16(D4.S3) = C3xD4:Dic3central extension (φ=1)48C6.16(D4.S3)288,266

׿
x
:
Z
F
o
wr
Q
<