extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(D4.S3) = C6.16D24 | φ: D4.S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.1(D4.S3) | 288,211 |
C6.2(D4.S3) = C12.73D12 | φ: D4.S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.2(D4.S3) | 288,215 |
C6.3(D4.S3) = C12.Dic6 | φ: D4.S3/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.3(D4.S3) | 288,221 |
C6.4(D4.S3) = D12⋊3Dic3 | φ: D4.S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.4(D4.S3) | 288,210 |
C6.5(D4.S3) = Dic6⋊Dic3 | φ: D4.S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.5(D4.S3) | 288,213 |
C6.6(D4.S3) = C12.6Dic6 | φ: D4.S3/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.6(D4.S3) | 288,222 |
C6.7(D4.S3) = C4.Dic18 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.7(D4.S3) | 288,15 |
C6.8(D4.S3) = C18.Q16 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.8(D4.S3) | 288,16 |
C6.9(D4.S3) = D4⋊Dic9 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.9(D4.S3) | 288,40 |
C6.10(D4.S3) = C2×D4.D9 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.10(D4.S3) | 288,141 |
C6.11(D4.S3) = C12.10Dic6 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.11(D4.S3) | 288,283 |
C6.12(D4.S3) = C62.114D4 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 288 | | C6.12(D4.S3) | 288,285 |
C6.13(D4.S3) = C62.116D4 | φ: D4.S3/C3×D4 → C2 ⊆ Aut C6 | 144 | | C6.13(D4.S3) | 288,307 |
C6.14(D4.S3) = C3×C12.Q8 | central extension (φ=1) | 96 | | C6.14(D4.S3) | 288,242 |
C6.15(D4.S3) = C3×C6.SD16 | central extension (φ=1) | 96 | | C6.15(D4.S3) | 288,244 |
C6.16(D4.S3) = C3×D4⋊Dic3 | central extension (φ=1) | 48 | | C6.16(D4.S3) | 288,266 |