Extensions 1→N→G→Q→1 with N=C6 and Q=D4.S3

Direct product G=N×Q with N=C6 and Q=D4.S3
dρLabelID
C6×D4.S348C6xD4.S3288,704

Semidirect products G=N:Q with N=C6 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C61(D4.S3) = C2×D12.S3φ: D4.S3/C3⋊C8C2 ⊆ Aut C696C6:1(D4.S3)288,476
C62(D4.S3) = C2×Dic6⋊S3φ: D4.S3/Dic6C2 ⊆ Aut C696C6:2(D4.S3)288,474
C63(D4.S3) = C2×C329SD16φ: D4.S3/C3×D4C2 ⊆ Aut C6144C6:3(D4.S3)288,790

Non-split extensions G=N.Q with N=C6 and Q=D4.S3
extensionφ:Q→Aut NdρLabelID
C6.1(D4.S3) = C6.16D24φ: D4.S3/C3⋊C8C2 ⊆ Aut C696C6.1(D4.S3)288,211
C6.2(D4.S3) = C12.73D12φ: D4.S3/C3⋊C8C2 ⊆ Aut C696C6.2(D4.S3)288,215
C6.3(D4.S3) = C12.Dic6φ: D4.S3/C3⋊C8C2 ⊆ Aut C696C6.3(D4.S3)288,221
C6.4(D4.S3) = D123Dic3φ: D4.S3/Dic6C2 ⊆ Aut C696C6.4(D4.S3)288,210
C6.5(D4.S3) = Dic6⋊Dic3φ: D4.S3/Dic6C2 ⊆ Aut C696C6.5(D4.S3)288,213
C6.6(D4.S3) = C12.6Dic6φ: D4.S3/Dic6C2 ⊆ Aut C696C6.6(D4.S3)288,222
C6.7(D4.S3) = C4.Dic18φ: D4.S3/C3×D4C2 ⊆ Aut C6288C6.7(D4.S3)288,15
C6.8(D4.S3) = C18.Q16φ: D4.S3/C3×D4C2 ⊆ Aut C6288C6.8(D4.S3)288,16
C6.9(D4.S3) = D4⋊Dic9φ: D4.S3/C3×D4C2 ⊆ Aut C6144C6.9(D4.S3)288,40
C6.10(D4.S3) = C2×D4.D9φ: D4.S3/C3×D4C2 ⊆ Aut C6144C6.10(D4.S3)288,141
C6.11(D4.S3) = C12.10Dic6φ: D4.S3/C3×D4C2 ⊆ Aut C6288C6.11(D4.S3)288,283
C6.12(D4.S3) = C62.114D4φ: D4.S3/C3×D4C2 ⊆ Aut C6288C6.12(D4.S3)288,285
C6.13(D4.S3) = C62.116D4φ: D4.S3/C3×D4C2 ⊆ Aut C6144C6.13(D4.S3)288,307
C6.14(D4.S3) = C3×C12.Q8central extension (φ=1)96C6.14(D4.S3)288,242
C6.15(D4.S3) = C3×C6.SD16central extension (φ=1)96C6.15(D4.S3)288,244
C6.16(D4.S3) = C3×D4⋊Dic3central extension (φ=1)48C6.16(D4.S3)288,266

׿
×
𝔽