metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.S3, C4.2D6, C6.8D4, C3⋊2SD16, Dic6⋊2C2, C12.2C22, C3⋊C8⋊2C2, (C3×D4).1C2, C2.5(C3⋊D4), SmallGroup(48,16)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4.S3
G = < a,b,c,d | a4=b2=c3=1, d2=a2, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Character table of D4.S3
class | 1 | 2A | 2B | 3 | 4A | 4B | 6A | 6B | 6C | 8A | 8B | 12 | |
size | 1 | 1 | 4 | 2 | 2 | 12 | 2 | 4 | 4 | 6 | 6 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | -1 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | -2 | -1 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | -1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | -√-3 | √-3 | 0 | 0 | 1 | complex lifted from C3⋊D4 |
ρ9 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | √-3 | -√-3 | 0 | 0 | 1 | complex lifted from C3⋊D4 |
ρ10 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | √-2 | -√-2 | 0 | complex lifted from SD16 |
ρ11 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -√-2 | √-2 | 0 | complex lifted from SD16 |
ρ12 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(6 8)(9 11)(13 14)(15 16)(17 20)(18 19)(22 24)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(6,8)(9,11)(13,14)(15,16)(17,20)(18,19)(22,24), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(6,8)(9,11)(13,14)(15,16)(17,20)(18,19)(22,24), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(6,8),(9,11),(13,14),(15,16),(17,20),(18,19),(22,24)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)]])
G:=TransitiveGroup(24,42);
D4.S3 is a maximal subgroup of
D8⋊S3 D8⋊3S3 S3×SD16 D4.D6 D12⋊6C22 Q8.13D6 Q8.14D6 D4.D9 Dic6⋊S3 D12.S3 C32⋊9SD16 A4⋊SD16 D4.S4 C30.D4 C6.D20 D4.D15 C28.D6 C6.D28 D4.D21 C33⋊7SD16 C33⋊SD16
D4.S3 is a maximal quotient of
C12.Q8 C6.SD16 D4⋊Dic3 D4.D9 Dic6⋊S3 D12.S3 C32⋊9SD16 A4⋊SD16 C30.D4 C6.D20 D4.D15 C28.D6 C6.D28 D4.D21 C33⋊7SD16 C33⋊SD16
Matrix representation of D4.S3 ►in GL4(𝔽5) generated by
4 | 4 | 0 | 3 |
1 | 0 | 3 | 2 |
0 | 3 | 1 | 4 |
3 | 3 | 1 | 0 |
4 | 0 | 0 | 0 |
1 | 1 | 2 | 0 |
0 | 0 | 4 | 0 |
3 | 0 | 4 | 1 |
4 | 0 | 1 | 0 |
2 | 4 | 4 | 4 |
4 | 0 | 0 | 0 |
4 | 1 | 2 | 0 |
0 | 4 | 4 | 4 |
1 | 0 | 2 | 2 |
0 | 0 | 1 | 4 |
0 | 0 | 2 | 4 |
G:=sub<GL(4,GF(5))| [4,1,0,3,4,0,3,3,0,3,1,1,3,2,4,0],[4,1,0,3,0,1,0,0,0,2,4,4,0,0,0,1],[4,2,4,4,0,4,0,1,1,4,0,2,0,4,0,0],[0,1,0,0,4,0,0,0,4,2,1,2,4,2,4,4] >;
D4.S3 in GAP, Magma, Sage, TeX
D_4.S_3
% in TeX
G:=Group("D4.S3");
// GroupNames label
G:=SmallGroup(48,16);
// by ID
G=gap.SmallGroup(48,16);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,40,61,182,97,42,804]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^3=1,d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4.S3 in TeX
Character table of D4.S3 in TeX