Copied to
clipboard

G = D4⋊Dic9order 288 = 25·32

1st semidirect product of D4 and Dic9 acting via Dic9/C18=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C36.8D4, D41Dic9, C18.12D8, C18.6SD16, (D4×C9)⋊1C4, C36.7(C2×C4), (C6×D4).2S3, (C2×D4).2D9, C93(D4⋊C4), C4⋊Dic910C2, C2.3(D4⋊D9), (D4×C18).2C2, (C2×C18).34D4, (C2×C4).41D18, (C2×C12).46D6, C4.1(C2×Dic9), C6.19(D4⋊S3), C4.13(C9⋊D4), C12.6(C3⋊D4), C2.3(D4.D9), C6.9(D4.S3), C3.(D4⋊Dic3), (C3×D4).1Dic3, C12.1(C2×Dic3), (C2×C36).24C22, C18.14(C22⋊C4), C22.17(C9⋊D4), C2.4(C18.D4), C6.15(C6.D4), (C2×C9⋊C8)⋊2C2, (C2×C6).72(C3⋊D4), SmallGroup(288,40)

Series: Derived Chief Lower central Upper central

C1C36 — D4⋊Dic9
C1C3C9C18C2×C18C2×C36C4⋊Dic9 — D4⋊Dic9
C9C18C36 — D4⋊Dic9
C1C22C2×C4C2×D4

Generators and relations for D4⋊Dic9
 G = < a,b,c,d | a4=b2=c18=1, d2=c9, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >

Subgroups: 248 in 75 conjugacy classes, 36 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, C9, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C2×C8, C2×D4, C18, C18, C3⋊C8, C2×Dic3, C2×C12, C3×D4, C3×D4, C22×C6, D4⋊C4, Dic9, C36, C2×C18, C2×C18, C2×C3⋊C8, C4⋊Dic3, C6×D4, C9⋊C8, C2×Dic9, C2×C36, D4×C9, D4×C9, C22×C18, D4⋊Dic3, C2×C9⋊C8, C4⋊Dic9, D4×C18, D4⋊Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D8, SD16, D9, C2×Dic3, C3⋊D4, D4⋊C4, Dic9, D18, D4⋊S3, D4.S3, C6.D4, C2×Dic9, C9⋊D4, D4⋊Dic3, D4.D9, D4⋊D9, C18.D4, D4⋊Dic9

Smallest permutation representation of D4⋊Dic9
On 144 points
Generators in S144
(1 130 43 20)(2 131 44 21)(3 132 45 22)(4 133 46 23)(5 134 47 24)(6 135 48 25)(7 136 49 26)(8 137 50 27)(9 138 51 28)(10 139 52 29)(11 140 53 30)(12 141 54 31)(13 142 37 32)(14 143 38 33)(15 144 39 34)(16 127 40 35)(17 128 41 36)(18 129 42 19)(55 85 97 120)(56 86 98 121)(57 87 99 122)(58 88 100 123)(59 89 101 124)(60 90 102 125)(61 73 103 126)(62 74 104 109)(63 75 105 110)(64 76 106 111)(65 77 107 112)(66 78 108 113)(67 79 91 114)(68 80 92 115)(69 81 93 116)(70 82 94 117)(71 83 95 118)(72 84 96 119)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(37 133)(38 134)(39 135)(40 136)(41 137)(42 138)(43 139)(44 140)(45 141)(46 142)(47 143)(48 144)(49 127)(50 128)(51 129)(52 130)(53 131)(54 132)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(73 117)(74 118)(75 119)(76 120)(77 121)(78 122)(79 123)(80 124)(81 125)(82 126)(83 109)(84 110)(85 111)(86 112)(87 113)(88 114)(89 115)(90 116)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)(97 106)(98 107)(99 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 88 10 79)(2 87 11 78)(3 86 12 77)(4 85 13 76)(5 84 14 75)(6 83 15 74)(7 82 16 73)(8 81 17 90)(9 80 18 89)(19 101 28 92)(20 100 29 91)(21 99 30 108)(22 98 31 107)(23 97 32 106)(24 96 33 105)(25 95 34 104)(26 94 35 103)(27 93 36 102)(37 111 46 120)(38 110 47 119)(39 109 48 118)(40 126 49 117)(41 125 50 116)(42 124 51 115)(43 123 52 114)(44 122 53 113)(45 121 54 112)(55 142 64 133)(56 141 65 132)(57 140 66 131)(58 139 67 130)(59 138 68 129)(60 137 69 128)(61 136 70 127)(62 135 71 144)(63 134 72 143)

G:=sub<Sym(144)| (1,130,43,20)(2,131,44,21)(3,132,45,22)(4,133,46,23)(5,134,47,24)(6,135,48,25)(7,136,49,26)(8,137,50,27)(9,138,51,28)(10,139,52,29)(11,140,53,30)(12,141,54,31)(13,142,37,32)(14,143,38,33)(15,144,39,34)(16,127,40,35)(17,128,41,36)(18,129,42,19)(55,85,97,120)(56,86,98,121)(57,87,99,122)(58,88,100,123)(59,89,101,124)(60,90,102,125)(61,73,103,126)(62,74,104,109)(63,75,105,110)(64,76,106,111)(65,77,107,112)(66,78,108,113)(67,79,91,114)(68,80,92,115)(69,81,93,116)(70,82,94,117)(71,83,95,118)(72,84,96,119), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,88,10,79)(2,87,11,78)(3,86,12,77)(4,85,13,76)(5,84,14,75)(6,83,15,74)(7,82,16,73)(8,81,17,90)(9,80,18,89)(19,101,28,92)(20,100,29,91)(21,99,30,108)(22,98,31,107)(23,97,32,106)(24,96,33,105)(25,95,34,104)(26,94,35,103)(27,93,36,102)(37,111,46,120)(38,110,47,119)(39,109,48,118)(40,126,49,117)(41,125,50,116)(42,124,51,115)(43,123,52,114)(44,122,53,113)(45,121,54,112)(55,142,64,133)(56,141,65,132)(57,140,66,131)(58,139,67,130)(59,138,68,129)(60,137,69,128)(61,136,70,127)(62,135,71,144)(63,134,72,143)>;

G:=Group( (1,130,43,20)(2,131,44,21)(3,132,45,22)(4,133,46,23)(5,134,47,24)(6,135,48,25)(7,136,49,26)(8,137,50,27)(9,138,51,28)(10,139,52,29)(11,140,53,30)(12,141,54,31)(13,142,37,32)(14,143,38,33)(15,144,39,34)(16,127,40,35)(17,128,41,36)(18,129,42,19)(55,85,97,120)(56,86,98,121)(57,87,99,122)(58,88,100,123)(59,89,101,124)(60,90,102,125)(61,73,103,126)(62,74,104,109)(63,75,105,110)(64,76,106,111)(65,77,107,112)(66,78,108,113)(67,79,91,114)(68,80,92,115)(69,81,93,116)(70,82,94,117)(71,83,95,118)(72,84,96,119), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(37,133)(38,134)(39,135)(40,136)(41,137)(42,138)(43,139)(44,140)(45,141)(46,142)(47,143)(48,144)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,88,10,79)(2,87,11,78)(3,86,12,77)(4,85,13,76)(5,84,14,75)(6,83,15,74)(7,82,16,73)(8,81,17,90)(9,80,18,89)(19,101,28,92)(20,100,29,91)(21,99,30,108)(22,98,31,107)(23,97,32,106)(24,96,33,105)(25,95,34,104)(26,94,35,103)(27,93,36,102)(37,111,46,120)(38,110,47,119)(39,109,48,118)(40,126,49,117)(41,125,50,116)(42,124,51,115)(43,123,52,114)(44,122,53,113)(45,121,54,112)(55,142,64,133)(56,141,65,132)(57,140,66,131)(58,139,67,130)(59,138,68,129)(60,137,69,128)(61,136,70,127)(62,135,71,144)(63,134,72,143) );

G=PermutationGroup([[(1,130,43,20),(2,131,44,21),(3,132,45,22),(4,133,46,23),(5,134,47,24),(6,135,48,25),(7,136,49,26),(8,137,50,27),(9,138,51,28),(10,139,52,29),(11,140,53,30),(12,141,54,31),(13,142,37,32),(14,143,38,33),(15,144,39,34),(16,127,40,35),(17,128,41,36),(18,129,42,19),(55,85,97,120),(56,86,98,121),(57,87,99,122),(58,88,100,123),(59,89,101,124),(60,90,102,125),(61,73,103,126),(62,74,104,109),(63,75,105,110),(64,76,106,111),(65,77,107,112),(66,78,108,113),(67,79,91,114),(68,80,92,115),(69,81,93,116),(70,82,94,117),(71,83,95,118),(72,84,96,119)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(37,133),(38,134),(39,135),(40,136),(41,137),(42,138),(43,139),(44,140),(45,141),(46,142),(47,143),(48,144),(49,127),(50,128),(51,129),(52,130),(53,131),(54,132),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(73,117),(74,118),(75,119),(76,120),(77,121),(78,122),(79,123),(80,124),(81,125),(82,126),(83,109),(84,110),(85,111),(86,112),(87,113),(88,114),(89,115),(90,116),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105),(97,106),(98,107),(99,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,88,10,79),(2,87,11,78),(3,86,12,77),(4,85,13,76),(5,84,14,75),(6,83,15,74),(7,82,16,73),(8,81,17,90),(9,80,18,89),(19,101,28,92),(20,100,29,91),(21,99,30,108),(22,98,31,107),(23,97,32,106),(24,96,33,105),(25,95,34,104),(26,94,35,103),(27,93,36,102),(37,111,46,120),(38,110,47,119),(39,109,48,118),(40,126,49,117),(41,125,50,116),(42,124,51,115),(43,123,52,114),(44,122,53,113),(45,121,54,112),(55,142,64,133),(56,141,65,132),(57,140,66,131),(58,139,67,130),(59,138,68,129),(60,137,69,128),(61,136,70,127),(62,135,71,144),(63,134,72,143)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A6B6C6D6E6F6G8A8B8C8D9A9B9C12A12B18A···18I18J···18U36A···36F
order1222223444466666668888999121218···1818···1836···36
size1111442223636222444418181818222442···24···44···4

54 irreducible representations

dim11111222222222222224444
type++++++++-+++-+--+
imageC1C2C2C2C4S3D4D4D6Dic3D8SD16D9C3⋊D4C3⋊D4D18Dic9C9⋊D4C9⋊D4D4⋊S3D4.S3D4.D9D4⋊D9
kernelD4⋊Dic9C2×C9⋊C8C4⋊Dic9D4×C18D4×C9C6×D4C36C2×C18C2×C12C3×D4C18C18C2×D4C12C2×C6C2×C4D4C4C22C6C6C2C2
# reps11114111122232236661133

Matrix representation of D4⋊Dic9 in GL4(𝔽73) generated by

72000
07200
00129
001072
,
1000
167200
00129
00072
,
36000
127100
0010
0001
,
21800
207100
00026
00590
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,1,10,0,0,29,72],[1,16,0,0,0,72,0,0,0,0,1,0,0,0,29,72],[36,12,0,0,0,71,0,0,0,0,1,0,0,0,0,1],[2,20,0,0,18,71,0,0,0,0,0,59,0,0,26,0] >;

D4⋊Dic9 in GAP, Magma, Sage, TeX

D_4\rtimes {\rm Dic}_9
% in TeX

G:=Group("D4:Dic9");
// GroupNames label

G:=SmallGroup(288,40);
// by ID

G=gap.SmallGroup(288,40);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,675,346,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^18=1,d^2=c^9,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽