Extensions 1→N→G→Q→1 with N=C3⋊C16 and Q=S3

Direct product G=N×Q with N=C3⋊C16 and Q=S3
dρLabelID
S3×C3⋊C16964S3xC3:C16288,189

Semidirect products G=N:Q with N=C3⋊C16 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊C161S3 = C3⋊D48φ: S3/C3C2 ⊆ Out C3⋊C16484+C3:C16:1S3288,194
C3⋊C162S3 = C323SD32φ: S3/C3C2 ⊆ Out C3⋊C16964-C3:C16:2S3288,196
C3⋊C163S3 = C24.49D6φ: S3/C3C2 ⊆ Out C3⋊C16484+C3:C16:3S3288,197
C3⋊C164S3 = C24.61D6φ: S3/C3C2 ⊆ Out C3⋊C16964C3:C16:4S3288,191
C3⋊C165S3 = C24.62D6φ: S3/C3C2 ⊆ Out C3⋊C16484C3:C16:5S3288,192
C3⋊C166S3 = C24.60D6φ: trivial image484C3:C16:6S3288,190

Non-split extensions G=N.Q with N=C3⋊C16 and Q=S3
extensionφ:Q→Out NdρLabelID
C3⋊C16.S3 = C323Q32φ: S3/C3C2 ⊆ Out C3⋊C16964-C3:C16.S3288,199

׿
×
𝔽