metabelian, supersoluble, monomial
Aliases: C24.62D6, C32⋊5M5(2), C3⋊C16⋊5S3, C8.23S32, C6.2(S3×C8), C12.44(C4×S3), C3⋊1(D6.C8), C3⋊Dic3.4C8, C32⋊4C8.5C4, (C3×C24).44C22, C4.12(C6.D6), C2.3(C12.29D6), (C3×C3⋊C16)⋊10C2, (C8×C3⋊S3).4C2, (C2×C3⋊S3).4C8, (C4×C3⋊S3).8C4, (C3×C6).15(C2×C8), (C3×C12).80(C2×C4), SmallGroup(288,192)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.62D6
G = < a,b,c | a24=1, b6=a3, c2=a6, bab-1=cac-1=a17, cbc-1=a18b5 >
Subgroups: 210 in 63 conjugacy classes, 26 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C32, Dic3, C12, C12, D6, C16, C2×C8, C3⋊S3, C3×C6, C3⋊C8, C24, C24, C4×S3, M5(2), C3⋊Dic3, C3×C12, C2×C3⋊S3, C3⋊C16, C48, S3×C8, C32⋊4C8, C3×C24, C4×C3⋊S3, D6.C8, C3×C3⋊C16, C8×C3⋊S3, C24.62D6
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C4×S3, M5(2), S32, S3×C8, C6.D6, D6.C8, C12.29D6, C24.62D6
(1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47)(2 36 22 8 42 28 14 48 34 20 6 40 26 12 46 32 18 4 38 24 10 44 30 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 13 3 25 15 37 27)(2 32 14 44 26 8 38 20)(4 18 16 30 28 42 40 6)(5 11 17 23 29 35 41 47)(7 45 19 9 31 21 43 33)(10 24 22 36 34 48 46 12)
G:=sub<Sym(48)| (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47)(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39,13,3,25,15,37,27)(2,32,14,44,26,8,38,20)(4,18,16,30,28,42,40,6)(5,11,17,23,29,35,41,47)(7,45,19,9,31,21,43,33)(10,24,22,36,34,48,46,12)>;
G:=Group( (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47)(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,39,13,3,25,15,37,27)(2,32,14,44,26,8,38,20)(4,18,16,30,28,42,40,6)(5,11,17,23,29,35,41,47)(7,45,19,9,31,21,43,33)(10,24,22,36,34,48,46,12) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47),(2,36,22,8,42,28,14,48,34,20,6,40,26,12,46,32,18,4,38,24,10,44,30,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,13,3,25,15,37,27),(2,32,14,44,26,8,38,20),(4,18,16,30,28,42,40,6),(5,11,17,23,29,35,41,47),(7,45,19,9,31,21,43,33),(10,24,22,36,34,48,46,12)]])
60 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 12A | 12B | 12C | 12D | 12E | 12F | 16A | ··· | 16H | 24A | ··· | 24H | 24I | 24J | 24K | 24L | 48A | ··· | 48P |
order | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 16 | ··· | 16 | 24 | ··· | 24 | 24 | 24 | 24 | 24 | 48 | ··· | 48 |
size | 1 | 1 | 18 | 2 | 2 | 4 | 1 | 1 | 18 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 18 | 18 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | S3 | D6 | C4×S3 | M5(2) | S3×C8 | D6.C8 | S32 | C6.D6 | C12.29D6 | C24.62D6 |
kernel | C24.62D6 | C3×C3⋊C16 | C8×C3⋊S3 | C32⋊4C8 | C4×C3⋊S3 | C3⋊Dic3 | C2×C3⋊S3 | C3⋊C16 | C24 | C12 | C32 | C6 | C3 | C8 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 4 | 8 | 16 | 1 | 1 | 2 | 4 |
Matrix representation of C24.62D6 ►in GL6(𝔽97)
0 | 96 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 0 | 0 | 0 |
0 | 0 | 0 | 50 | 0 | 0 |
0 | 0 | 0 | 0 | 75 | 0 |
0 | 0 | 0 | 0 | 0 | 75 |
22 | 0 | 0 | 0 | 0 | 0 |
75 | 75 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 47 | 0 | 0 |
0 | 0 | 49 | 47 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 47 |
0 | 0 | 0 | 0 | 50 | 0 |
96 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 31 | 33 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 22 |
0 | 0 | 0 | 0 | 22 | 0 |
G:=sub<GL(6,GF(97))| [0,1,0,0,0,0,96,1,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,75,0,0,0,0,0,0,75],[22,75,0,0,0,0,0,75,0,0,0,0,0,0,50,49,0,0,0,0,47,47,0,0,0,0,0,0,50,50,0,0,0,0,47,0],[96,1,0,0,0,0,0,1,0,0,0,0,0,0,64,31,0,0,0,0,0,33,0,0,0,0,0,0,0,22,0,0,0,0,22,0] >;
C24.62D6 in GAP, Magma, Sage, TeX
C_{24}._{62}D_6
% in TeX
G:=Group("C24.62D6");
// GroupNames label
G:=SmallGroup(288,192);
// by ID
G=gap.SmallGroup(288,192);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,253,36,58,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c|a^24=1,b^6=a^3,c^2=a^6,b*a*b^-1=c*a*c^-1=a^17,c*b*c^-1=a^18*b^5>;
// generators/relations