Copied to
clipboard

G = C24.49D6order 288 = 25·32

2nd non-split extension by C24 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: C24.49D6, C6.14D24, C324SD32, Dic121S3, C12.11D12, C8.6S32, C3⋊C163S3, (C3×C6).10D8, C6.3(D4⋊S3), C33(C48⋊C2), (C3×C12).25D4, C325D8.2C2, (C3×Dic12)⋊6C2, C31(C8.6D6), C4.3(C3⋊D12), C2.6(C3⋊D24), C12.68(C3⋊D4), (C3×C24).10C22, (C3×C3⋊C16)⋊3C2, SmallGroup(288,197)

Series: Derived Chief Lower central Upper central

C1C3×C24 — C24.49D6
C1C3C32C3×C6C3×C12C3×C24C3×Dic12 — C24.49D6
C32C3×C6C3×C12C3×C24 — C24.49D6
C1C2C4C8

Generators and relations for C24.49D6
 G = < a,b,c | a24=c2=1, b6=a12, bab-1=cac=a-1, cbc=a15b5 >

Subgroups: 434 in 63 conjugacy classes, 22 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, Dic3, C12, C12, D6, C16, D8, Q16, C3⋊S3, C3×C6, C24, C24, Dic6, D12, C3×Q8, SD32, C3×Dic3, C3×C12, C2×C3⋊S3, C3⋊C16, C48, D24, Dic12, C3×Q16, C3×C24, C3×Dic6, C12⋊S3, C48⋊C2, C8.6D6, C3×C3⋊C16, C3×Dic12, C325D8, C24.49D6
Quotients: C1, C2, C22, S3, D4, D6, D8, D12, C3⋊D4, SD32, S32, D24, D4⋊S3, C3⋊D12, C48⋊C2, C8.6D6, C3⋊D24, C24.49D6

Smallest permutation representation of C24.49D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 45 21 25 17 29 13 33 9 37 5 41)(2 44 22 48 18 28 14 32 10 36 6 40)(3 43 23 47 19 27 15 31 11 35 7 39)(4 42 24 46 20 26 16 30 12 34 8 38)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 24)(20 23)(21 22)(25 41)(26 40)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(42 48)(43 47)(44 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,45,21,25,17,29,13,33,9,37,5,41)(2,44,22,48,18,28,14,32,10,36,6,40)(3,43,23,47,19,27,15,31,11,35,7,39)(4,42,24,46,20,26,16,30,12,34,8,38), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(42,48)(43,47)(44,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,45,21,25,17,29,13,33,9,37,5,41)(2,44,22,48,18,28,14,32,10,36,6,40)(3,43,23,47,19,27,15,31,11,35,7,39)(4,42,24,46,20,26,16,30,12,34,8,38), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,41)(26,40)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(42,48)(43,47)(44,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,45,21,25,17,29,13,33,9,37,5,41),(2,44,22,48,18,28,14,32,10,36,6,40),(3,43,23,47,19,27,15,31,11,35,7,39),(4,42,24,46,20,26,16,30,12,34,8,38)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,24),(20,23),(21,22),(25,41),(26,40),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(42,48),(43,47),(44,46)]])

42 conjugacy classes

class 1 2A2B3A3B3C4A4B6A6B6C8A8B12A12B12C12D12E12F12G16A16B16C16D24A24B24C24D24E···24J48A···48H
order122333446668812121212121212161616162424242424···2448···48
size117222422422422224442424666622224···46···6

42 irreducible representations

dim11112222222222444444
type+++++++++++++++++
imageC1C2C2C2S3S3D4D6D8D12C3⋊D4SD32D24C48⋊C2S32D4⋊S3C3⋊D12C8.6D6C3⋊D24C24.49D6
kernelC24.49D6C3×C3⋊C16C3×Dic12C325D8C3⋊C16Dic12C3×C12C24C3×C6C12C12C32C6C3C8C6C4C3C2C1
# reps11111112222448111224

Matrix representation of C24.49D6 in GL4(𝔽97) generated by

1000
0100
008195
00279
,
09600
1100
00243
004595
,
0100
1000
001895
001679
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,81,2,0,0,95,79],[0,1,0,0,96,1,0,0,0,0,2,45,0,0,43,95],[0,1,0,0,1,0,0,0,0,0,18,16,0,0,95,79] >;

C24.49D6 in GAP, Magma, Sage, TeX

C_{24}._{49}D_6
% in TeX

G:=Group("C24.49D6");
// GroupNames label

G:=SmallGroup(288,197);
// by ID

G=gap.SmallGroup(288,197);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,85,92,590,58,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=c^2=1,b^6=a^12,b*a*b^-1=c*a*c=a^-1,c*b*c=a^15*b^5>;
// generators/relations

׿
×
𝔽