metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3⋊C16, C6.C8, C8.2S3, C24.3C2, C12.2C4, C4.2Dic3, C2.(C3⋊C8), SmallGroup(48,1)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C3⋊C16 |
Generators and relations for C3⋊C16
G = < a,b | a3=b16=1, bab-1=a-1 >
Character table of C3⋊C16
class | 1 | 2 | 3 | 4A | 4B | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | i | -i | -i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | -i | i | i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | -i | i | -i | i | linear of order 8 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | i | -i | i | -i | linear of order 8 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | -i | i | -i | i | linear of order 8 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | i | -i | i | -i | linear of order 8 |
ρ9 | 1 | -1 | 1 | -i | i | -1 | ζ166 | ζ1610 | ζ162 | ζ1614 | -i | i | ζ167 | ζ16 | ζ1613 | ζ165 | ζ1611 | ζ163 | ζ1615 | ζ169 | ζ1610 | ζ166 | ζ162 | ζ1614 | linear of order 16 |
ρ10 | 1 | -1 | 1 | i | -i | -1 | ζ162 | ζ1614 | ζ166 | ζ1610 | i | -i | ζ165 | ζ163 | ζ167 | ζ1615 | ζ16 | ζ169 | ζ1613 | ζ1611 | ζ1614 | ζ162 | ζ166 | ζ1610 | linear of order 16 |
ρ11 | 1 | -1 | 1 | i | -i | -1 | ζ1610 | ζ166 | ζ1614 | ζ162 | i | -i | ζ16 | ζ167 | ζ1611 | ζ163 | ζ1613 | ζ165 | ζ169 | ζ1615 | ζ166 | ζ1610 | ζ1614 | ζ162 | linear of order 16 |
ρ12 | 1 | -1 | 1 | -i | i | -1 | ζ1614 | ζ162 | ζ1610 | ζ166 | -i | i | ζ163 | ζ165 | ζ16 | ζ169 | ζ167 | ζ1615 | ζ1611 | ζ1613 | ζ162 | ζ1614 | ζ1610 | ζ166 | linear of order 16 |
ρ13 | 1 | -1 | 1 | i | -i | -1 | ζ162 | ζ1614 | ζ166 | ζ1610 | i | -i | ζ1613 | ζ1611 | ζ1615 | ζ167 | ζ169 | ζ16 | ζ165 | ζ163 | ζ1614 | ζ162 | ζ166 | ζ1610 | linear of order 16 |
ρ14 | 1 | -1 | 1 | i | -i | -1 | ζ1610 | ζ166 | ζ1614 | ζ162 | i | -i | ζ169 | ζ1615 | ζ163 | ζ1611 | ζ165 | ζ1613 | ζ16 | ζ167 | ζ166 | ζ1610 | ζ1614 | ζ162 | linear of order 16 |
ρ15 | 1 | -1 | 1 | -i | i | -1 | ζ1614 | ζ162 | ζ1610 | ζ166 | -i | i | ζ1611 | ζ1613 | ζ169 | ζ16 | ζ1615 | ζ167 | ζ163 | ζ165 | ζ162 | ζ1614 | ζ1610 | ζ166 | linear of order 16 |
ρ16 | 1 | -1 | 1 | -i | i | -1 | ζ166 | ζ1610 | ζ162 | ζ1614 | -i | i | ζ1615 | ζ169 | ζ165 | ζ1613 | ζ163 | ζ1611 | ζ167 | ζ16 | ζ1610 | ζ166 | ζ162 | ζ1614 | linear of order 16 |
ρ17 | 2 | 2 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ18 | 2 | 2 | -1 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ19 | 2 | 2 | -1 | -2 | -2 | -1 | 2i | -2i | -2i | 2i | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | i | -i | complex lifted from C3⋊C8 |
ρ20 | 2 | 2 | -1 | -2 | -2 | -1 | -2i | 2i | 2i | -2i | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | -i | i | complex lifted from C3⋊C8 |
ρ21 | 2 | -2 | -1 | 2i | -2i | 1 | 2ζ85 | 2ζ83 | 2ζ87 | 2ζ8 | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87 | ζ8 | ζ83 | ζ85 | complex faithful, Schur index 2 |
ρ22 | 2 | -2 | -1 | 2i | -2i | 1 | 2ζ8 | 2ζ87 | 2ζ83 | 2ζ85 | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83 | ζ85 | ζ87 | ζ8 | complex faithful, Schur index 2 |
ρ23 | 2 | -2 | -1 | -2i | 2i | 1 | 2ζ87 | 2ζ8 | 2ζ85 | 2ζ83 | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ85 | ζ83 | ζ8 | ζ87 | complex faithful, Schur index 2 |
ρ24 | 2 | -2 | -1 | -2i | 2i | 1 | 2ζ83 | 2ζ85 | 2ζ8 | 2ζ87 | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ8 | ζ87 | ζ85 | ζ83 | complex faithful, Schur index 2 |
(1 41 24)(2 25 42)(3 43 26)(4 27 44)(5 45 28)(6 29 46)(7 47 30)(8 31 48)(9 33 32)(10 17 34)(11 35 18)(12 19 36)(13 37 20)(14 21 38)(15 39 22)(16 23 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,41,24)(2,25,42)(3,43,26)(4,27,44)(5,45,28)(6,29,46)(7,47,30)(8,31,48)(9,33,32)(10,17,34)(11,35,18)(12,19,36)(13,37,20)(14,21,38)(15,39,22)(16,23,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (1,41,24)(2,25,42)(3,43,26)(4,27,44)(5,45,28)(6,29,46)(7,47,30)(8,31,48)(9,33,32)(10,17,34)(11,35,18)(12,19,36)(13,37,20)(14,21,38)(15,39,22)(16,23,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,41,24),(2,25,42),(3,43,26),(4,27,44),(5,45,28),(6,29,46),(7,47,30),(8,31,48),(9,33,32),(10,17,34),(11,35,18),(12,19,36),(13,37,20),(14,21,38),(15,39,22),(16,23,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])
C3⋊C16 is a maximal subgroup of
S3×C16 D6.C8 C12.C8 C3⋊D16 D8.S3 C8.6D6 C3⋊Q32 C9⋊C16 C24.S3 A4⋊C16 C8.7S4 C15⋊3C16 C15⋊C16 C21⋊C16 He3⋊C16 C33⋊4C16 C6.F9
C3⋊C16 is a maximal quotient of
C3⋊C32 C9⋊C16 C24.S3 A4⋊C16 C15⋊3C16 C15⋊C16 C21⋊C16 C33⋊4C16 C6.F9
Matrix representation of C3⋊C16 ►in GL2(𝔽17) generated by
16 | 6 |
14 | 0 |
6 | 15 |
0 | 11 |
G:=sub<GL(2,GF(17))| [16,14,6,0],[6,0,15,11] >;
C3⋊C16 in GAP, Magma, Sage, TeX
C_3\rtimes C_{16}
% in TeX
G:=Group("C3:C16");
// GroupNames label
G:=SmallGroup(48,1);
// by ID
G=gap.SmallGroup(48,1);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,10,26,42,804]);
// Polycyclic
G:=Group<a,b|a^3=b^16=1,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊C16 in TeX
Character table of C3⋊C16 in TeX