# Extensions 1→N→G→Q→1 with N=C3×C22⋊C4 and Q=S3

Direct product G=N×Q with N=C3×C22⋊C4 and Q=S3
dρLabelID
C3×S3×C22⋊C448C3xS3xC2^2:C4288,651

Semidirect products G=N:Q with N=C3×C22⋊C4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C22⋊C4)⋊1S3 = C3×C23.6D6φ: S3/C3C2 ⊆ Out C3×C22⋊C4244(C3xC2^2:C4):1S3288,240
(C3×C22⋊C4)⋊2S3 = C62.110D4φ: S3/C3C2 ⊆ Out C3×C22⋊C472(C3xC2^2:C4):2S3288,281
(C3×C22⋊C4)⋊3S3 = C6212D4φ: S3/C3C2 ⊆ Out C3×C22⋊C472(C3xC2^2:C4):3S3288,739
(C3×C22⋊C4)⋊4S3 = C62.69D4φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4):4S3288,743
(C3×C22⋊C4)⋊5S3 = C62.227C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4):5S3288,740
(C3×C22⋊C4)⋊6S3 = C62.228C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4):6S3288,741
(C3×C22⋊C4)⋊7S3 = C62.229C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4):7S3288,742
(C3×C22⋊C4)⋊8S3 = C22⋊C4×C3⋊S3φ: S3/C3C2 ⊆ Out C3×C22⋊C472(C3xC2^2:C4):8S3288,737
(C3×C22⋊C4)⋊9S3 = C62.225C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4):9S3288,738
(C3×C22⋊C4)⋊10S3 = C3×D6⋊D4φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4):10S3288,653
(C3×C22⋊C4)⋊11S3 = C3×C23.9D6φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4):11S3288,654
(C3×C22⋊C4)⋊12S3 = C3×Dic3⋊D4φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4):12S3288,655
(C3×C22⋊C4)⋊13S3 = C3×C23.11D6φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4):13S3288,656
(C3×C22⋊C4)⋊14S3 = C3×C23.21D6φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4):14S3288,657
(C3×C22⋊C4)⋊15S3 = C3×Dic34D4φ: trivial image48(C3xC2^2:C4):15S3288,652

Non-split extensions G=N.Q with N=C3×C22⋊C4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×C22⋊C4).1S3 = C22.D36φ: S3/C3C2 ⊆ Out C3×C22⋊C4724(C3xC2^2:C4).1S3288,13
(C3×C22⋊C4).2S3 = C222Dic18φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).2S3288,88
(C3×C22⋊C4).3S3 = C223D36φ: S3/C3C2 ⊆ Out C3×C22⋊C472(C3xC2^2:C4).3S3288,92
(C3×C22⋊C4).4S3 = C22.4D36φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).4S3288,96
(C3×C22⋊C4).5S3 = C626Q8φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).5S3288,735
(C3×C22⋊C4).6S3 = C23.8D18φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).6S3288,89
(C3×C22⋊C4).7S3 = C23.9D18φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).7S3288,93
(C3×C22⋊C4).8S3 = D18⋊D4φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).8S3288,94
(C3×C22⋊C4).9S3 = Dic9.D4φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).9S3288,95
(C3×C22⋊C4).10S3 = C62.223C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).10S3288,736
(C3×C22⋊C4).11S3 = C23.16D18φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).11S3288,87
(C3×C22⋊C4).12S3 = C22⋊C4×D9φ: S3/C3C2 ⊆ Out C3×C22⋊C472(C3xC2^2:C4).12S3288,90
(C3×C22⋊C4).13S3 = Dic94D4φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).13S3288,91
(C3×C22⋊C4).14S3 = C62.221C23φ: S3/C3C2 ⊆ Out C3×C22⋊C4144(C3xC2^2:C4).14S3288,734
(C3×C22⋊C4).15S3 = C3×Dic3.D4φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4).15S3288,649
(C3×C22⋊C4).16S3 = C3×C23.8D6φ: S3/C3C2 ⊆ Out C3×C22⋊C448(C3xC2^2:C4).16S3288,650
(C3×C22⋊C4).17S3 = C3×C23.16D6φ: trivial image48(C3xC2^2:C4).17S3288,648

׿
×
𝔽