Copied to
clipboard

G = D18⋊D4order 288 = 25·32

1st semidirect product of D18 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D181D4, Dic92D4, C23.10D18, C2.9(D4×D9), (C2×D36)⋊3C2, C91(C4⋊D4), C22⋊C44D9, C6.81(S3×D4), D18⋊C410C2, Dic9⋊C45C2, C3.(Dic3⋊D4), (C2×C4).27D18, C18.20(C2×D4), C18.9(C4○D4), (C2×C12).178D6, (C2×C36).4C22, (C22×C6).44D6, C6.79(C4○D12), (C2×C18).25C23, C2.11(D365C2), (C2×Dic9).6C22, (C22×D9).4C22, C22.43(C22×D9), (C22×C18).14C22, (C2×C4×D9)⋊11C2, (C2×C9⋊D4)⋊2C2, (C9×C22⋊C4)⋊6C2, (C3×C22⋊C4).8S3, (C2×C6).182(C22×S3), SmallGroup(288,94)

Series: Derived Chief Lower central Upper central

C1C2×C18 — D18⋊D4
C1C3C9C18C2×C18C22×D9C2×C4×D9 — D18⋊D4
C9C2×C18 — D18⋊D4
C1C22C22⋊C4

Generators and relations for D18⋊D4
 G = < a,b,c,d | a18=b2=c4=d2=1, bab=cac-1=dad=a-1, cbc-1=a16b, dbd=a7b, dcd=c-1 >

Subgroups: 732 in 141 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, C18, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C4⋊D4, Dic9, Dic9, C36, D18, D18, C2×C18, C2×C18, Dic3⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C4×D9, D36, C2×Dic9, C9⋊D4, C2×C36, C22×D9, C22×C18, Dic3⋊D4, Dic9⋊C4, D18⋊C4, C9×C22⋊C4, C2×C4×D9, C2×D36, C2×C9⋊D4, D18⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, C22×S3, C4⋊D4, D18, C4○D12, S3×D4, C22×D9, Dic3⋊D4, D365C2, D4×D9, D18⋊D4

Smallest permutation representation of D18⋊D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(37 107)(38 106)(39 105)(40 104)(41 103)(42 102)(43 101)(44 100)(45 99)(46 98)(47 97)(48 96)(49 95)(50 94)(51 93)(52 92)(53 91)(54 108)(55 130)(56 129)(57 128)(58 127)(59 144)(60 143)(61 142)(62 141)(63 140)(64 139)(65 138)(66 137)(67 136)(68 135)(69 134)(70 133)(71 132)(72 131)(73 117)(74 116)(75 115)(76 114)(77 113)(78 112)(79 111)(80 110)(81 109)(82 126)(83 125)(84 124)(85 123)(86 122)(87 121)(88 120)(89 119)(90 118)
(1 84 138 38)(2 83 139 37)(3 82 140 54)(4 81 141 53)(5 80 142 52)(6 79 143 51)(7 78 144 50)(8 77 127 49)(9 76 128 48)(10 75 129 47)(11 74 130 46)(12 73 131 45)(13 90 132 44)(14 89 133 43)(15 88 134 42)(16 87 135 41)(17 86 136 40)(18 85 137 39)(19 117 56 99)(20 116 57 98)(21 115 58 97)(22 114 59 96)(23 113 60 95)(24 112 61 94)(25 111 62 93)(26 110 63 92)(27 109 64 91)(28 126 65 108)(29 125 66 107)(30 124 67 106)(31 123 68 105)(32 122 69 104)(33 121 70 103)(34 120 71 102)(35 119 72 101)(36 118 55 100)
(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)(31 36)(32 35)(33 34)(37 85)(38 84)(39 83)(40 82)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 90)(51 89)(52 88)(53 87)(54 86)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(69 72)(70 71)(91 114)(92 113)(93 112)(94 111)(95 110)(96 109)(97 126)(98 125)(99 124)(100 123)(101 122)(102 121)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(127 131)(128 130)(132 144)(133 143)(134 142)(135 141)(136 140)(137 139)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,108)(55,130)(56,129)(57,128)(58,127)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,117)(74,116)(75,115)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,126)(83,125)(84,124)(85,123)(86,122)(87,121)(88,120)(89,119)(90,118), (1,84,138,38)(2,83,139,37)(3,82,140,54)(4,81,141,53)(5,80,142,52)(6,79,143,51)(7,78,144,50)(8,77,127,49)(9,76,128,48)(10,75,129,47)(11,74,130,46)(12,73,131,45)(13,90,132,44)(14,89,133,43)(15,88,134,42)(16,87,135,41)(17,86,136,40)(18,85,137,39)(19,117,56,99)(20,116,57,98)(21,115,58,97)(22,114,59,96)(23,113,60,95)(24,112,61,94)(25,111,62,93)(26,110,63,92)(27,109,64,91)(28,126,65,108)(29,125,66,107)(30,124,67,106)(31,123,68,105)(32,122,69,104)(33,121,70,103)(34,120,71,102)(35,119,72,101)(36,118,55,100), (2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(31,36)(32,35)(33,34)(37,85)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,90)(51,89)(52,88)(53,87)(54,86)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,72)(70,71)(91,114)(92,113)(93,112)(94,111)(95,110)(96,109)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(127,131)(128,130)(132,144)(133,143)(134,142)(135,141)(136,140)(137,139)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,108)(55,130)(56,129)(57,128)(58,127)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,117)(74,116)(75,115)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,126)(83,125)(84,124)(85,123)(86,122)(87,121)(88,120)(89,119)(90,118), (1,84,138,38)(2,83,139,37)(3,82,140,54)(4,81,141,53)(5,80,142,52)(6,79,143,51)(7,78,144,50)(8,77,127,49)(9,76,128,48)(10,75,129,47)(11,74,130,46)(12,73,131,45)(13,90,132,44)(14,89,133,43)(15,88,134,42)(16,87,135,41)(17,86,136,40)(18,85,137,39)(19,117,56,99)(20,116,57,98)(21,115,58,97)(22,114,59,96)(23,113,60,95)(24,112,61,94)(25,111,62,93)(26,110,63,92)(27,109,64,91)(28,126,65,108)(29,125,66,107)(30,124,67,106)(31,123,68,105)(32,122,69,104)(33,121,70,103)(34,120,71,102)(35,119,72,101)(36,118,55,100), (2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(31,36)(32,35)(33,34)(37,85)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,90)(51,89)(52,88)(53,87)(54,86)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(69,72)(70,71)(91,114)(92,113)(93,112)(94,111)(95,110)(96,109)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(127,131)(128,130)(132,144)(133,143)(134,142)(135,141)(136,140)(137,139) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(37,107),(38,106),(39,105),(40,104),(41,103),(42,102),(43,101),(44,100),(45,99),(46,98),(47,97),(48,96),(49,95),(50,94),(51,93),(52,92),(53,91),(54,108),(55,130),(56,129),(57,128),(58,127),(59,144),(60,143),(61,142),(62,141),(63,140),(64,139),(65,138),(66,137),(67,136),(68,135),(69,134),(70,133),(71,132),(72,131),(73,117),(74,116),(75,115),(76,114),(77,113),(78,112),(79,111),(80,110),(81,109),(82,126),(83,125),(84,124),(85,123),(86,122),(87,121),(88,120),(89,119),(90,118)], [(1,84,138,38),(2,83,139,37),(3,82,140,54),(4,81,141,53),(5,80,142,52),(6,79,143,51),(7,78,144,50),(8,77,127,49),(9,76,128,48),(10,75,129,47),(11,74,130,46),(12,73,131,45),(13,90,132,44),(14,89,133,43),(15,88,134,42),(16,87,135,41),(17,86,136,40),(18,85,137,39),(19,117,56,99),(20,116,57,98),(21,115,58,97),(22,114,59,96),(23,113,60,95),(24,112,61,94),(25,111,62,93),(26,110,63,92),(27,109,64,91),(28,126,65,108),(29,125,66,107),(30,124,67,106),(31,123,68,105),(32,122,69,104),(33,121,70,103),(34,120,71,102),(35,119,72,101),(36,118,55,100)], [(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25),(31,36),(32,35),(33,34),(37,85),(38,84),(39,83),(40,82),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,90),(51,89),(52,88),(53,87),(54,86),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(69,72),(70,71),(91,114),(92,113),(93,112),(94,111),(95,110),(96,109),(97,126),(98,125),(99,124),(100,123),(101,122),(102,121),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(127,131),(128,130),(132,144),(133,143),(134,142),(135,141),(136,140),(137,139)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order122222223444444666669991212121218···1818···1836···36
size1111418183622241818362224422244442···24···44···4

54 irreducible representations

dim11111112222222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D6D6C4○D4D9D18D18C4○D12D365C2S3×D4D4×D9
kernelD18⋊D4Dic9⋊C4D18⋊C4C9×C22⋊C4C2×C4×D9C2×D36C2×C9⋊D4C3×C22⋊C4Dic9D18C2×C12C22×C6C18C22⋊C4C2×C4C23C6C2C6C2
# reps111111212221236341226

Matrix representation of D18⋊D4 in GL4(𝔽37) generated by

36000
03600
00617
002026
,
36300
0100
00412
00833
,
36000
03600
00213
001135
,
1000
133600
002026
00617
G:=sub<GL(4,GF(37))| [36,0,0,0,0,36,0,0,0,0,6,20,0,0,17,26],[36,0,0,0,3,1,0,0,0,0,4,8,0,0,12,33],[36,0,0,0,0,36,0,0,0,0,2,11,0,0,13,35],[1,13,0,0,0,36,0,0,0,0,20,6,0,0,26,17] >;

D18⋊D4 in GAP, Magma, Sage, TeX

D_{18}\rtimes D_4
% in TeX

G:=Group("D18:D4");
// GroupNames label

G:=SmallGroup(288,94);
// by ID

G=gap.SmallGroup(288,94);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,590,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^18=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^16*b,d*b*d=a^7*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽