Copied to
clipboard

G = C3xDic3.D4order 288 = 25·32

Direct product of C3 and Dic3.D4

direct product, metabelian, supersoluble, monomial

Aliases: C3xDic3.D4, C62:5Q8, C62.169C23, C6.4(C6xQ8), C4:Dic3:2C6, (C2xC6):6Dic6, C6.16(C6xD4), Dic3:C4:4C6, (C2xDic6):2C6, C6.174(S3xD4), C2.6(C6xDic6), (C6xDic6):26C2, (C2xC12).230D6, C23.22(S3xC6), Dic3.6(C3xD4), C6.50(C2xDic6), C22:3(C3xDic6), (C3xDic3).43D4, C6.D4.2C6, (C22xC6).103D6, C32:16(C22:Q8), (C6xC12).188C22, (C2xC62).45C22, C6.110(D4:2S3), (C22xDic3).4C6, (C6xDic3).91C22, C2.6(C3xS3xD4), (C2xC6):2(C3xQ8), (C2xC4).5(S3xC6), C3:1(C3xC22:Q8), (C2xC12).1(C2xC6), C6.20(C3xC4oD4), C22.39(S3xC2xC6), (C3xC6).47(C2xQ8), (C3xC4:Dic3):26C2, C2.6(C3xD4:2S3), (C3xC6).203(C2xD4), (C3xC22:C4).2C6, C22:C4.1(C3xS3), (Dic3xC2xC6).11C2, (C3xDic3:C4):23C2, (C3xC22:C4).15S3, (C22xC6).19(C2xC6), (C2xC6).24(C22xC6), (C2xDic3).5(C2xC6), (C3xC6).126(C4oD4), (C2xC6).302(C22xS3), (C3xC6.D4).7C2, (C32xC22:C4).4C2, SmallGroup(288,649)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xDic3.D4
C1C3C6C2xC6C62C6xDic3Dic3xC2xC6 — C3xDic3.D4
C3C2xC6 — C3xDic3.D4
C1C2xC6C3xC22:C4

Generators and relations for C3xDic3.D4
 G = < a,b,c,d,e | a3=b6=d4=e2=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=b3c, ce=ec, ede=b3d-1 >

Subgroups: 354 in 165 conjugacy classes, 70 normal (58 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, Q8, C23, C32, Dic3, Dic3, C12, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C4:C4, C22xC4, C2xQ8, C3xC6, C3xC6, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xC6, C22xC6, C22:Q8, C3xDic3, C3xDic3, C3xC12, C62, C62, C62, Dic3:C4, C4:Dic3, C6.D4, C3xC22:C4, C3xC22:C4, C3xC4:C4, C2xDic6, C22xDic3, C22xC12, C6xQ8, C3xDic6, C6xDic3, C6xDic3, C6xC12, C2xC62, Dic3.D4, C3xC22:Q8, C3xDic3:C4, C3xC4:Dic3, C3xC6.D4, C32xC22:C4, C6xDic6, Dic3xC2xC6, C3xDic3.D4
Quotients: C1, C2, C3, C22, S3, C6, D4, Q8, C23, D6, C2xC6, C2xD4, C2xQ8, C4oD4, C3xS3, Dic6, C3xD4, C3xQ8, C22xS3, C22xC6, C22:Q8, S3xC6, C2xDic6, S3xD4, D4:2S3, C6xD4, C6xQ8, C3xC4oD4, C3xDic6, S3xC2xC6, Dic3.D4, C3xC22:Q8, C6xDic6, C3xS3xD4, C3xD4:2S3, C3xDic3.D4

Smallest permutation representation of C3xDic3.D4
On 48 points
Generators in S48
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 37 4 40)(2 42 5 39)(3 41 6 38)(7 22 10 19)(8 21 11 24)(9 20 12 23)(13 33 16 36)(14 32 17 35)(15 31 18 34)(25 46 28 43)(26 45 29 48)(27 44 30 47)
(1 22 14 27)(2 23 15 28)(3 24 16 29)(4 19 17 30)(5 20 18 25)(6 21 13 26)(7 32 47 37)(8 33 48 38)(9 34 43 39)(10 35 44 40)(11 36 45 41)(12 31 46 42)
(1 4)(2 5)(3 6)(7 47)(8 48)(9 43)(10 44)(11 45)(12 46)(13 16)(14 17)(15 18)(19 30)(20 25)(21 26)(22 27)(23 28)(24 29)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)

G:=sub<Sym(48)| (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,37,4,40)(2,42,5,39)(3,41,6,38)(7,22,10,19)(8,21,11,24)(9,20,12,23)(13,33,16,36)(14,32,17,35)(15,31,18,34)(25,46,28,43)(26,45,29,48)(27,44,30,47), (1,22,14,27)(2,23,15,28)(3,24,16,29)(4,19,17,30)(5,20,18,25)(6,21,13,26)(7,32,47,37)(8,33,48,38)(9,34,43,39)(10,35,44,40)(11,36,45,41)(12,31,46,42), (1,4)(2,5)(3,6)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,16)(14,17)(15,18)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)>;

G:=Group( (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,37,4,40)(2,42,5,39)(3,41,6,38)(7,22,10,19)(8,21,11,24)(9,20,12,23)(13,33,16,36)(14,32,17,35)(15,31,18,34)(25,46,28,43)(26,45,29,48)(27,44,30,47), (1,22,14,27)(2,23,15,28)(3,24,16,29)(4,19,17,30)(5,20,18,25)(6,21,13,26)(7,32,47,37)(8,33,48,38)(9,34,43,39)(10,35,44,40)(11,36,45,41)(12,31,46,42), (1,4)(2,5)(3,6)(7,47)(8,48)(9,43)(10,44)(11,45)(12,46)(13,16)(14,17)(15,18)(19,30)(20,25)(21,26)(22,27)(23,28)(24,29)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42) );

G=PermutationGroup([[(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,37,4,40),(2,42,5,39),(3,41,6,38),(7,22,10,19),(8,21,11,24),(9,20,12,23),(13,33,16,36),(14,32,17,35),(15,31,18,34),(25,46,28,43),(26,45,29,48),(27,44,30,47)], [(1,22,14,27),(2,23,15,28),(3,24,16,29),(4,19,17,30),(5,20,18,25),(6,21,13,26),(7,32,47,37),(8,33,48,38),(9,34,43,39),(10,35,44,40),(11,36,45,41),(12,31,46,42)], [(1,4),(2,5),(3,6),(7,47),(8,48),(9,43),(10,44),(11,45),(12,46),(13,16),(14,17),(15,18),(19,30),(20,25),(21,26),(22,27),(23,28),(24,29),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)]])

72 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D4E4F4G4H6A···6F6G···6S6T···6Y12A···12P12Q···12X12Y12Z12AA12AB
order12222233333444444446···66···66···612···1212···1212121212
size1111221122244666612121···12···24···44···46···612121212

72 irreducible representations

dim11111111111111222222222222224444
type+++++++++-++-+-
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6S3D4Q8D6D6C4oD4C3xS3C3xD4Dic6C3xQ8S3xC6S3xC6C3xC4oD4C3xDic6S3xD4D4:2S3C3xS3xD4C3xD4:2S3
kernelC3xDic3.D4C3xDic3:C4C3xC4:Dic3C3xC6.D4C32xC22:C4C6xDic6Dic3xC2xC6Dic3.D4Dic3:C4C4:Dic3C6.D4C3xC22:C4C2xDic6C22xDic3C3xC22:C4C3xDic3C62C2xC12C22xC6C3xC6C22:C4Dic3C2xC6C2xC6C2xC4C23C6C22C6C6C2C2
# reps12111112422222122212244442481122

Matrix representation of C3xDic3.D4 in GL4(F13) generated by

1000
0100
0030
0003
,
1000
0100
00100
0094
,
12000
01200
0018
00312
,
01200
1000
0050
0028
,
1000
01200
00120
00012
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,3],[1,0,0,0,0,1,0,0,0,0,10,9,0,0,0,4],[12,0,0,0,0,12,0,0,0,0,1,3,0,0,8,12],[0,1,0,0,12,0,0,0,0,0,5,2,0,0,0,8],[1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12] >;

C3xDic3.D4 in GAP, Magma, Sage, TeX

C_3\times {\rm Dic}_3.D_4
% in TeX

G:=Group("C3xDic3.D4");
// GroupNames label

G:=SmallGroup(288,649);
// by ID

G=gap.SmallGroup(288,649);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,168,590,555,142,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=d^4=e^2=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^3*c,c*e=e*c,e*d*e=b^3*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<