# Extensions 1→N→G→Q→1 with N=C3×D8 and Q=C6

Direct product G=N×Q with N=C3×D8 and Q=C6
dρLabelID
D8×C3×C6144D8xC3xC6288,829

Semidirect products G=N:Q with N=C3×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D8)⋊1C6 = C3×C3⋊D16φ: C6/C3C2 ⊆ Out C3×D8484(C3xD8):1C6288,260
(C3×D8)⋊2C6 = C3×S3×D8φ: C6/C3C2 ⊆ Out C3×D8484(C3xD8):2C6288,681
(C3×D8)⋊3C6 = C3×D83S3φ: C6/C3C2 ⊆ Out C3×D8484(C3xD8):3C6288,683
(C3×D8)⋊4C6 = C3×D8⋊S3φ: C6/C3C2 ⊆ Out C3×D8484(C3xD8):4C6288,682
(C3×D8)⋊5C6 = C32×D16φ: C6/C3C2 ⊆ Out C3×D8144(C3xD8):5C6288,329
(C3×D8)⋊6C6 = C32×C8⋊C22φ: C6/C3C2 ⊆ Out C3×D872(C3xD8):6C6288,833
(C3×D8)⋊7C6 = C32×C4○D8φ: trivial image144(C3xD8):7C6288,832

Non-split extensions G=N.Q with N=C3×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D8).1C6 = C3×D8.S3φ: C6/C3C2 ⊆ Out C3×D8484(C3xD8).1C6288,261
(C3×D8).2C6 = C9×D16φ: C6/C3C2 ⊆ Out C3×D81442(C3xD8).2C6288,61
(C3×D8).3C6 = C9×SD32φ: C6/C3C2 ⊆ Out C3×D81442(C3xD8).3C6288,62
(C3×D8).4C6 = C32×SD32φ: C6/C3C2 ⊆ Out C3×D8144(C3xD8).4C6288,330
(C3×D8).5C6 = C9×C8⋊C22φ: C6/C3C2 ⊆ Out C3×D8724(C3xD8).5C6288,186
(C3×D8).6C6 = D8×C18φ: trivial image144(C3xD8).6C6288,182
(C3×D8).7C6 = C9×C4○D8φ: trivial image1442(C3xD8).7C6288,185

׿
×
𝔽