Extensions 1→N→G→Q→1 with N=C3xD8 and Q=C6

Direct product G=NxQ with N=C3xD8 and Q=C6
dρLabelID
D8xC3xC6144D8xC3xC6288,829

Semidirect products G=N:Q with N=C3xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xD8):1C6 = C3xC3:D16φ: C6/C3C2 ⊆ Out C3xD8484(C3xD8):1C6288,260
(C3xD8):2C6 = C3xS3xD8φ: C6/C3C2 ⊆ Out C3xD8484(C3xD8):2C6288,681
(C3xD8):3C6 = C3xD8:3S3φ: C6/C3C2 ⊆ Out C3xD8484(C3xD8):3C6288,683
(C3xD8):4C6 = C3xD8:S3φ: C6/C3C2 ⊆ Out C3xD8484(C3xD8):4C6288,682
(C3xD8):5C6 = C32xD16φ: C6/C3C2 ⊆ Out C3xD8144(C3xD8):5C6288,329
(C3xD8):6C6 = C32xC8:C22φ: C6/C3C2 ⊆ Out C3xD872(C3xD8):6C6288,833
(C3xD8):7C6 = C32xC4oD8φ: trivial image144(C3xD8):7C6288,832

Non-split extensions G=N.Q with N=C3xD8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xD8).1C6 = C3xD8.S3φ: C6/C3C2 ⊆ Out C3xD8484(C3xD8).1C6288,261
(C3xD8).2C6 = C9xD16φ: C6/C3C2 ⊆ Out C3xD81442(C3xD8).2C6288,61
(C3xD8).3C6 = C9xSD32φ: C6/C3C2 ⊆ Out C3xD81442(C3xD8).3C6288,62
(C3xD8).4C6 = C32xSD32φ: C6/C3C2 ⊆ Out C3xD8144(C3xD8).4C6288,330
(C3xD8).5C6 = C9xC8:C22φ: C6/C3C2 ⊆ Out C3xD8724(C3xD8).5C6288,186
(C3xD8).6C6 = D8xC18φ: trivial image144(C3xD8).6C6288,182
(C3xD8).7C6 = C9xC4oD8φ: trivial image1442(C3xD8).7C6288,185

׿
x
:
Z
F
o
wr
Q
<