Copied to
clipboard

G = C9×D16order 288 = 25·32

Direct product of C9 and D16

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C9×D16, C1445C2, C161C18, C48.2C6, D81C18, C36.37D4, C18.15D8, C72.24C22, C3.(C3×D16), (C9×D8)⋊5C2, (C3×D16).C3, C4.1(D4×C9), C2.3(C9×D8), C8.2(C2×C18), (C3×D8).2C6, C6.15(C3×D8), C24.21(C2×C6), C12.36(C3×D4), SmallGroup(288,61)

Series: Derived Chief Lower central Upper central

C1C8 — C9×D16
C1C2C4C12C24C72C9×D8 — C9×D16
C1C2C4C8 — C9×D16
C1C18C36C72 — C9×D16

Generators and relations for C9×D16
 G = < a,b,c | a9=b16=c2=1, ab=ba, ac=ca, cbc=b-1 >

8C2
8C2
4C22
4C22
8C6
8C6
2D4
2D4
4C2×C6
4C2×C6
8C18
8C18
2C3×D4
2C3×D4
4C2×C18
4C2×C18
2D4×C9
2D4×C9

Smallest permutation representation of C9×D16
On 144 points
Generators in S144
(1 56 111 21 122 72 41 137 84)(2 57 112 22 123 73 42 138 85)(3 58 97 23 124 74 43 139 86)(4 59 98 24 125 75 44 140 87)(5 60 99 25 126 76 45 141 88)(6 61 100 26 127 77 46 142 89)(7 62 101 27 128 78 47 143 90)(8 63 102 28 113 79 48 144 91)(9 64 103 29 114 80 33 129 92)(10 49 104 30 115 65 34 130 93)(11 50 105 31 116 66 35 131 94)(12 51 106 32 117 67 36 132 95)(13 52 107 17 118 68 37 133 96)(14 53 108 18 119 69 38 134 81)(15 54 109 19 120 70 39 135 82)(16 55 110 20 121 71 40 136 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 24)(18 23)(19 22)(20 21)(25 32)(26 31)(27 30)(28 29)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(49 62)(50 61)(51 60)(52 59)(53 58)(54 57)(55 56)(63 64)(65 78)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(79 80)(81 86)(82 85)(83 84)(87 96)(88 95)(89 94)(90 93)(91 92)(97 108)(98 107)(99 106)(100 105)(101 104)(102 103)(109 112)(110 111)(113 114)(115 128)(116 127)(117 126)(118 125)(119 124)(120 123)(121 122)(129 144)(130 143)(131 142)(132 141)(133 140)(134 139)(135 138)(136 137)

G:=sub<Sym(144)| (1,56,111,21,122,72,41,137,84)(2,57,112,22,123,73,42,138,85)(3,58,97,23,124,74,43,139,86)(4,59,98,24,125,75,44,140,87)(5,60,99,25,126,76,45,141,88)(6,61,100,26,127,77,46,142,89)(7,62,101,27,128,78,47,143,90)(8,63,102,28,113,79,48,144,91)(9,64,103,29,114,80,33,129,92)(10,49,104,30,115,65,34,130,93)(11,50,105,31,116,66,35,131,94)(12,51,106,32,117,67,36,132,95)(13,52,107,17,118,68,37,133,96)(14,53,108,18,119,69,38,134,81)(15,54,109,19,120,70,39,135,82)(16,55,110,20,121,71,40,136,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,56)(63,64)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,80)(81,86)(82,85)(83,84)(87,96)(88,95)(89,94)(90,93)(91,92)(97,108)(98,107)(99,106)(100,105)(101,104)(102,103)(109,112)(110,111)(113,114)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122)(129,144)(130,143)(131,142)(132,141)(133,140)(134,139)(135,138)(136,137)>;

G:=Group( (1,56,111,21,122,72,41,137,84)(2,57,112,22,123,73,42,138,85)(3,58,97,23,124,74,43,139,86)(4,59,98,24,125,75,44,140,87)(5,60,99,25,126,76,45,141,88)(6,61,100,26,127,77,46,142,89)(7,62,101,27,128,78,47,143,90)(8,63,102,28,113,79,48,144,91)(9,64,103,29,114,80,33,129,92)(10,49,104,30,115,65,34,130,93)(11,50,105,31,116,66,35,131,94)(12,51,106,32,117,67,36,132,95)(13,52,107,17,118,68,37,133,96)(14,53,108,18,119,69,38,134,81)(15,54,109,19,120,70,39,135,82)(16,55,110,20,121,71,40,136,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,24)(18,23)(19,22)(20,21)(25,32)(26,31)(27,30)(28,29)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(49,62)(50,61)(51,60)(52,59)(53,58)(54,57)(55,56)(63,64)(65,78)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,80)(81,86)(82,85)(83,84)(87,96)(88,95)(89,94)(90,93)(91,92)(97,108)(98,107)(99,106)(100,105)(101,104)(102,103)(109,112)(110,111)(113,114)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122)(129,144)(130,143)(131,142)(132,141)(133,140)(134,139)(135,138)(136,137) );

G=PermutationGroup([[(1,56,111,21,122,72,41,137,84),(2,57,112,22,123,73,42,138,85),(3,58,97,23,124,74,43,139,86),(4,59,98,24,125,75,44,140,87),(5,60,99,25,126,76,45,141,88),(6,61,100,26,127,77,46,142,89),(7,62,101,27,128,78,47,143,90),(8,63,102,28,113,79,48,144,91),(9,64,103,29,114,80,33,129,92),(10,49,104,30,115,65,34,130,93),(11,50,105,31,116,66,35,131,94),(12,51,106,32,117,67,36,132,95),(13,52,107,17,118,68,37,133,96),(14,53,108,18,119,69,38,134,81),(15,54,109,19,120,70,39,135,82),(16,55,110,20,121,71,40,136,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,24),(18,23),(19,22),(20,21),(25,32),(26,31),(27,30),(28,29),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(49,62),(50,61),(51,60),(52,59),(53,58),(54,57),(55,56),(63,64),(65,78),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(79,80),(81,86),(82,85),(83,84),(87,96),(88,95),(89,94),(90,93),(91,92),(97,108),(98,107),(99,106),(100,105),(101,104),(102,103),(109,112),(110,111),(113,114),(115,128),(116,127),(117,126),(118,125),(119,124),(120,123),(121,122),(129,144),(130,143),(131,142),(132,141),(133,140),(134,139),(135,138),(136,137)]])

99 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F8A8B9A···9F12A12B16A16B16C16D18A···18F18G···18R24A24B24C24D36A···36F48A···48H72A···72L144A···144X
order1222334666666889···912121616161618···1818···182424242436···3648···4872···72144···144
size1188112118888221···12222221···18···822222···22···22···22···2

99 irreducible representations

dim111111111222222222
type++++++
imageC1C2C2C3C6C6C9C18C18D4D8C3×D4D16C3×D8D4×C9C3×D16C9×D8C9×D16
kernelC9×D16C144C9×D8C3×D16C48C3×D8D16C16D8C36C18C12C9C6C4C3C2C1
# reps112224661212244681224

Matrix representation of C9×D16 in GL2(𝔽433) generated by

2960
0296
,
26041
392260
,
26041
41173
G:=sub<GL(2,GF(433))| [296,0,0,296],[260,392,41,260],[260,41,41,173] >;

C9×D16 in GAP, Magma, Sage, TeX

C_9\times D_{16}
% in TeX

G:=Group("C9xD16");
// GroupNames label

G:=SmallGroup(288,61);
// by ID

G=gap.SmallGroup(288,61);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-3,-2,-2,197,142,2355,1186,528,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c|a^9=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9×D16 in TeX

׿
×
𝔽