Copied to
clipboard

G = D8×C18order 288 = 25·32

Direct product of C18 and D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C18, C36.42D4, C7212C22, C36.44C23, C3.(C6×D8), (C6×D8).C3, C82(C2×C18), (C2×C8)⋊3C18, C4.6(D4×C9), (C2×C72)⋊11C2, D41(C2×C18), (C2×D4)⋊4C18, (C3×D8).6C6, C6.74(C6×D4), C6.18(C3×D8), (D4×C18)⋊13C2, C24.24(C2×C6), (C2×C24).14C6, (C6×D4).14C6, (C2×C18).52D4, C2.11(D4×C18), C18.74(C2×D4), C12.42(C3×D4), (D4×C9)⋊10C22, C4.1(C22×C18), C22.14(D4×C9), C12.44(C22×C6), (C2×C36).127C22, (C2×C6).61(C3×D4), (C2×C4).26(C2×C18), (C3×D4).11(C2×C6), (C2×C12).144(C2×C6), SmallGroup(288,182)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C18
C1C2C6C12C36D4×C9C9×D8 — D8×C18
C1C2C4 — D8×C18
C1C2×C18C2×C36 — D8×C18

Generators and relations for D8×C18
 G = < a,b,c | a18=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 210 in 114 conjugacy classes, 66 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C6, C6, C6, C8, C2×C4, D4, D4, C23, C9, C12, C2×C6, C2×C6, C2×C8, D8, C2×D4, C18, C18, C18, C24, C2×C12, C3×D4, C3×D4, C22×C6, C2×D8, C36, C2×C18, C2×C18, C2×C24, C3×D8, C6×D4, C72, C2×C36, D4×C9, D4×C9, C22×C18, C6×D8, C2×C72, C9×D8, D4×C18, D8×C18
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, D8, C2×D4, C18, C3×D4, C22×C6, C2×D8, C2×C18, C3×D8, C6×D4, D4×C9, C22×C18, C6×D8, C9×D8, D4×C18, D8×C18

Smallest permutation representation of D8×C18
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 76 93 123 22 132 55 41)(2 77 94 124 23 133 56 42)(3 78 95 125 24 134 57 43)(4 79 96 126 25 135 58 44)(5 80 97 109 26 136 59 45)(6 81 98 110 27 137 60 46)(7 82 99 111 28 138 61 47)(8 83 100 112 29 139 62 48)(9 84 101 113 30 140 63 49)(10 85 102 114 31 141 64 50)(11 86 103 115 32 142 65 51)(12 87 104 116 33 143 66 52)(13 88 105 117 34 144 67 53)(14 89 106 118 35 127 68 54)(15 90 107 119 36 128 69 37)(16 73 108 120 19 129 70 38)(17 74 91 121 20 130 71 39)(18 75 92 122 21 131 72 40)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 37)(16 38)(17 39)(18 40)(19 120)(20 121)(21 122)(22 123)(23 124)(24 125)(25 126)(26 109)(27 110)(28 111)(29 112)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(55 76)(56 77)(57 78)(58 79)(59 80)(60 81)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 73)(71 74)(72 75)(91 130)(92 131)(93 132)(94 133)(95 134)(96 135)(97 136)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 144)(106 127)(107 128)(108 129)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,76,93,123,22,132,55,41)(2,77,94,124,23,133,56,42)(3,78,95,125,24,134,57,43)(4,79,96,126,25,135,58,44)(5,80,97,109,26,136,59,45)(6,81,98,110,27,137,60,46)(7,82,99,111,28,138,61,47)(8,83,100,112,29,139,62,48)(9,84,101,113,30,140,63,49)(10,85,102,114,31,141,64,50)(11,86,103,115,32,142,65,51)(12,87,104,116,33,143,66,52)(13,88,105,117,34,144,67,53)(14,89,106,118,35,127,68,54)(15,90,107,119,36,128,69,37)(16,73,108,120,19,129,70,38)(17,74,91,121,20,130,71,39)(18,75,92,122,21,131,72,40), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,37)(16,38)(17,39)(18,40)(19,120)(20,121)(21,122)(22,123)(23,124)(24,125)(25,126)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,73)(71,74)(72,75)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,127)(107,128)(108,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,76,93,123,22,132,55,41)(2,77,94,124,23,133,56,42)(3,78,95,125,24,134,57,43)(4,79,96,126,25,135,58,44)(5,80,97,109,26,136,59,45)(6,81,98,110,27,137,60,46)(7,82,99,111,28,138,61,47)(8,83,100,112,29,139,62,48)(9,84,101,113,30,140,63,49)(10,85,102,114,31,141,64,50)(11,86,103,115,32,142,65,51)(12,87,104,116,33,143,66,52)(13,88,105,117,34,144,67,53)(14,89,106,118,35,127,68,54)(15,90,107,119,36,128,69,37)(16,73,108,120,19,129,70,38)(17,74,91,121,20,130,71,39)(18,75,92,122,21,131,72,40), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,37)(16,38)(17,39)(18,40)(19,120)(20,121)(21,122)(22,123)(23,124)(24,125)(25,126)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,73)(71,74)(72,75)(91,130)(92,131)(93,132)(94,133)(95,134)(96,135)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,127)(107,128)(108,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,76,93,123,22,132,55,41),(2,77,94,124,23,133,56,42),(3,78,95,125,24,134,57,43),(4,79,96,126,25,135,58,44),(5,80,97,109,26,136,59,45),(6,81,98,110,27,137,60,46),(7,82,99,111,28,138,61,47),(8,83,100,112,29,139,62,48),(9,84,101,113,30,140,63,49),(10,85,102,114,31,141,64,50),(11,86,103,115,32,142,65,51),(12,87,104,116,33,143,66,52),(13,88,105,117,34,144,67,53),(14,89,106,118,35,127,68,54),(15,90,107,119,36,128,69,37),(16,73,108,120,19,129,70,38),(17,74,91,121,20,130,71,39),(18,75,92,122,21,131,72,40)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,37),(16,38),(17,39),(18,40),(19,120),(20,121),(21,122),(22,123),(23,124),(24,125),(25,126),(26,109),(27,110),(28,111),(29,112),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(55,76),(56,77),(57,78),(58,79),(59,80),(60,81),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,73),(71,74),(72,75),(91,130),(92,131),(93,132),(94,133),(95,134),(96,135),(97,136),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,144),(106,127),(107,128),(108,129)]])

126 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B6A···6F6G···6N8A8B8C8D9A···9F12A12B12C12D18A···18R18S···18AP24A···24H36A···36L72A···72X
order1222222233446···66···688889···91212121218···1818···1824···2436···3672···72
size1111444411221···14···422221···122221···14···42···22···22···2

126 irreducible representations

dim111111111111222222222
type+++++++
imageC1C2C2C2C3C6C6C6C9C18C18C18D4D4D8C3×D4C3×D4C3×D8D4×C9D4×C9C9×D8
kernelD8×C18C2×C72C9×D8D4×C18C6×D8C2×C24C3×D8C6×D4C2×D8C2×C8D8C2×D4C36C2×C18C18C12C2×C6C6C4C22C2
# reps114222846624121142286624

Matrix representation of D8×C18 in GL4(𝔽73) generated by

36000
03600
00570
00057
,
42400
153100
005716
005757
,
42400
523100
005716
001616
G:=sub<GL(4,GF(73))| [36,0,0,0,0,36,0,0,0,0,57,0,0,0,0,57],[42,15,0,0,4,31,0,0,0,0,57,57,0,0,16,57],[42,52,0,0,4,31,0,0,0,0,57,16,0,0,16,16] >;

D8×C18 in GAP, Magma, Sage, TeX

D_8\times C_{18}
% in TeX

G:=Group("D8xC18");
// GroupNames label

G:=SmallGroup(288,182);
// by ID

G=gap.SmallGroup(288,182);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-2,365,192,5884,2951,242]);
// Polycyclic

G:=Group<a,b,c|a^18=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽