extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3xC12) = C3xC6.D8 | φ: S3xC12/C3xDic3 → C2 ⊆ Aut C4 | 96 | | C4.1(S3xC12) | 288,243 |
C4.2(S3xC12) = C3xC6.SD16 | φ: S3xC12/C3xDic3 → C2 ⊆ Aut C4 | 96 | | C4.2(S3xC12) | 288,244 |
C4.3(S3xC12) = C3xD12:C4 | φ: S3xC12/C3xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.3(S3xC12) | 288,259 |
C4.4(S3xC12) = C3xDic6:C4 | φ: S3xC12/C3xDic3 → C2 ⊆ Aut C4 | 96 | | C4.4(S3xC12) | 288,658 |
C4.5(S3xC12) = C3xD12.C4 | φ: S3xC12/C3xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(S3xC12) | 288,678 |
C4.6(S3xC12) = C3xC42:4S3 | φ: S3xC12/C3xC12 → C2 ⊆ Aut C4 | 24 | 2 | C4.6(S3xC12) | 288,239 |
C4.7(S3xC12) = C3xC2.Dic12 | φ: S3xC12/C3xC12 → C2 ⊆ Aut C4 | 96 | | C4.7(S3xC12) | 288,250 |
C4.8(S3xC12) = C3xC2.D24 | φ: S3xC12/C3xC12 → C2 ⊆ Aut C4 | 96 | | C4.8(S3xC12) | 288,255 |
C4.9(S3xC12) = C12xDic6 | φ: S3xC12/C3xC12 → C2 ⊆ Aut C4 | 96 | | C4.9(S3xC12) | 288,639 |
C4.10(S3xC12) = C3xC8oD12 | φ: S3xC12/C3xC12 → C2 ⊆ Aut C4 | 48 | 2 | C4.10(S3xC12) | 288,672 |
C4.11(S3xC12) = C3xC6.Q16 | φ: S3xC12/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.11(S3xC12) | 288,241 |
C4.12(S3xC12) = C3xC12.Q8 | φ: S3xC12/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.12(S3xC12) | 288,242 |
C4.13(S3xC12) = C3xC12.53D4 | φ: S3xC12/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.13(S3xC12) | 288,256 |
C4.14(S3xC12) = C3xC4:C4:7S3 | φ: S3xC12/S3xC6 → C2 ⊆ Aut C4 | 96 | | C4.14(S3xC12) | 288,663 |
C4.15(S3xC12) = C3xS3xM4(2) | φ: S3xC12/S3xC6 → C2 ⊆ Aut C4 | 48 | 4 | C4.15(S3xC12) | 288,677 |
C4.16(S3xC12) = S3xC48 | central extension (φ=1) | 96 | 2 | C4.16(S3xC12) | 288,231 |
C4.17(S3xC12) = C3xD6.C8 | central extension (φ=1) | 96 | 2 | C4.17(S3xC12) | 288,232 |
C4.18(S3xC12) = C12xC3:C8 | central extension (φ=1) | 96 | | C4.18(S3xC12) | 288,236 |
C4.19(S3xC12) = C3xC42.S3 | central extension (φ=1) | 96 | | C4.19(S3xC12) | 288,237 |
C4.20(S3xC12) = Dic3xC24 | central extension (φ=1) | 96 | | C4.20(S3xC12) | 288,247 |
C4.21(S3xC12) = C3xC24:C4 | central extension (φ=1) | 96 | | C4.21(S3xC12) | 288,249 |
C4.22(S3xC12) = C3xC42:2S3 | central extension (φ=1) | 96 | | C4.22(S3xC12) | 288,643 |
C4.23(S3xC12) = S3xC2xC24 | central extension (φ=1) | 96 | | C4.23(S3xC12) | 288,670 |
C4.24(S3xC12) = C6xC8:S3 | central extension (φ=1) | 96 | | C4.24(S3xC12) | 288,671 |