Extensions 1→N→G→Q→1 with N=C4 and Q=S3xC12

Direct product G=NxQ with N=C4 and Q=S3xC12
dρLabelID
S3xC4xC1296S3xC4xC12288,642

Semidirect products G=N:Q with N=C4 and Q=S3xC12
extensionφ:Q→Aut NdρLabelID
C4:1(S3xC12) = C3xDic3:5D4φ: S3xC12/C3xDic3C2 ⊆ Aut C496C4:1(S3xC12)288,664
C4:2(S3xC12) = C12xD12φ: S3xC12/C3xC12C2 ⊆ Aut C496C4:2(S3xC12)288,644
C4:3(S3xC12) = C3xS3xC4:C4φ: S3xC12/S3xC6C2 ⊆ Aut C496C4:3(S3xC12)288,662

Non-split extensions G=N.Q with N=C4 and Q=S3xC12
extensionφ:Q→Aut NdρLabelID
C4.1(S3xC12) = C3xC6.D8φ: S3xC12/C3xDic3C2 ⊆ Aut C496C4.1(S3xC12)288,243
C4.2(S3xC12) = C3xC6.SD16φ: S3xC12/C3xDic3C2 ⊆ Aut C496C4.2(S3xC12)288,244
C4.3(S3xC12) = C3xD12:C4φ: S3xC12/C3xDic3C2 ⊆ Aut C4484C4.3(S3xC12)288,259
C4.4(S3xC12) = C3xDic6:C4φ: S3xC12/C3xDic3C2 ⊆ Aut C496C4.4(S3xC12)288,658
C4.5(S3xC12) = C3xD12.C4φ: S3xC12/C3xDic3C2 ⊆ Aut C4484C4.5(S3xC12)288,678
C4.6(S3xC12) = C3xC42:4S3φ: S3xC12/C3xC12C2 ⊆ Aut C4242C4.6(S3xC12)288,239
C4.7(S3xC12) = C3xC2.Dic12φ: S3xC12/C3xC12C2 ⊆ Aut C496C4.7(S3xC12)288,250
C4.8(S3xC12) = C3xC2.D24φ: S3xC12/C3xC12C2 ⊆ Aut C496C4.8(S3xC12)288,255
C4.9(S3xC12) = C12xDic6φ: S3xC12/C3xC12C2 ⊆ Aut C496C4.9(S3xC12)288,639
C4.10(S3xC12) = C3xC8oD12φ: S3xC12/C3xC12C2 ⊆ Aut C4482C4.10(S3xC12)288,672
C4.11(S3xC12) = C3xC6.Q16φ: S3xC12/S3xC6C2 ⊆ Aut C496C4.11(S3xC12)288,241
C4.12(S3xC12) = C3xC12.Q8φ: S3xC12/S3xC6C2 ⊆ Aut C496C4.12(S3xC12)288,242
C4.13(S3xC12) = C3xC12.53D4φ: S3xC12/S3xC6C2 ⊆ Aut C4484C4.13(S3xC12)288,256
C4.14(S3xC12) = C3xC4:C4:7S3φ: S3xC12/S3xC6C2 ⊆ Aut C496C4.14(S3xC12)288,663
C4.15(S3xC12) = C3xS3xM4(2)φ: S3xC12/S3xC6C2 ⊆ Aut C4484C4.15(S3xC12)288,677
C4.16(S3xC12) = S3xC48central extension (φ=1)962C4.16(S3xC12)288,231
C4.17(S3xC12) = C3xD6.C8central extension (φ=1)962C4.17(S3xC12)288,232
C4.18(S3xC12) = C12xC3:C8central extension (φ=1)96C4.18(S3xC12)288,236
C4.19(S3xC12) = C3xC42.S3central extension (φ=1)96C4.19(S3xC12)288,237
C4.20(S3xC12) = Dic3xC24central extension (φ=1)96C4.20(S3xC12)288,247
C4.21(S3xC12) = C3xC24:C4central extension (φ=1)96C4.21(S3xC12)288,249
C4.22(S3xC12) = C3xC42:2S3central extension (φ=1)96C4.22(S3xC12)288,643
C4.23(S3xC12) = S3xC2xC24central extension (φ=1)96C4.23(S3xC12)288,670
C4.24(S3xC12) = C6xC8:S3central extension (φ=1)96C4.24(S3xC12)288,671

׿
x
:
Z
F
o
wr
Q
<