Extensions 1→N→G→Q→1 with N=C6 and Q=C4×A4

Direct product G=N×Q with N=C6 and Q=C4×A4

Semidirect products G=N:Q with N=C6 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C6⋊(C4×A4) = C2×Dic3×A4φ: C4×A4/C2×A4C2 ⊆ Aut C672C6:(C4xA4)288,927

Non-split extensions G=N.Q with N=C6 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C6.1(C4×A4) = A4×C3⋊C8φ: C4×A4/C2×A4C2 ⊆ Aut C6726C6.1(C4xA4)288,408
C6.2(C4×A4) = Dic3×SL2(𝔽3)φ: C4×A4/C2×A4C2 ⊆ Aut C696C6.2(C4xA4)288,409
C6.3(C4×A4) = SL2(𝔽3).Dic3φ: C4×A4/C2×A4C2 ⊆ Aut C6964C6.3(C4xA4)288,410
C6.4(C4×A4) = C4×Q8⋊C9central extension (φ=1)288C6.4(C4xA4)288,72
C6.5(C4×A4) = C8×C3.A4central extension (φ=1)723C6.5(C4xA4)288,76
C6.6(C4×A4) = Q8.C36central extension (φ=1)1442C6.6(C4xA4)288,77
C6.7(C4×A4) = C2×C4×C3.A4central extension (φ=1)72C6.7(C4xA4)288,343
C6.8(C4×A4) = C12×SL2(𝔽3)central extension (φ=1)96C6.8(C4xA4)288,633
C6.9(C4×A4) = A4×C24central extension (φ=1)723C6.9(C4xA4)288,637
C6.10(C4×A4) = C3×C8.A4central extension (φ=1)962C6.10(C4xA4)288,638