direct product, metabelian, soluble, monomial, A-group
Aliases: A4×C3⋊C8, C3⋊(C8×A4), (C2×C6)⋊C24, (C3×A4)⋊3C8, C6.1(C4×A4), C4.4(S3×A4), (C4×A4).4S3, (C6×A4).3C4, C12.4(C2×A4), (C22×C6).C12, (C12×A4).6C2, C2.1(Dic3×A4), (C22×C12).2C6, (C2×A4).2Dic3, C23.3(C3×Dic3), (C22×C3⋊C8)⋊C3, C22⋊2(C3×C3⋊C8), (C22×C4).4(C3×S3), SmallGroup(288,408)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C6 — A4×C3⋊C8 |
Generators and relations for A4×C3⋊C8
G = < a,b,c,d,e | a2=b2=c3=d3=e8=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 178 in 58 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C23, C32, C12, C12, A4, A4, C2×C6, C2×C6, C2×C8, C22×C4, C3×C6, C3⋊C8, C3⋊C8, C24, C2×C12, C2×A4, C2×A4, C22×C6, C22×C8, C3×C12, C3×A4, C2×C3⋊C8, C4×A4, C4×A4, C22×C12, C3×C3⋊C8, C6×A4, C8×A4, C22×C3⋊C8, C12×A4, A4×C3⋊C8
Quotients: C1, C2, C3, C4, S3, C6, C8, Dic3, C12, A4, C3×S3, C3⋊C8, C24, C2×A4, C3×Dic3, C4×A4, C3×C3⋊C8, S3×A4, C8×A4, Dic3×A4, A4×C3⋊C8
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(41 45)(42 46)(43 47)(44 48)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)
(1 15 24)(2 16 17)(3 9 18)(4 10 19)(5 11 20)(6 12 21)(7 13 22)(8 14 23)(25 36 59)(26 37 60)(27 38 61)(28 39 62)(29 40 63)(30 33 64)(31 34 57)(32 35 58)(41 50 67)(42 51 68)(43 52 69)(44 53 70)(45 54 71)(46 55 72)(47 56 65)(48 49 66)
(1 58 71)(2 72 59)(3 60 65)(4 66 61)(5 62 67)(6 68 63)(7 64 69)(8 70 57)(9 26 47)(10 48 27)(11 28 41)(12 42 29)(13 30 43)(14 44 31)(15 32 45)(16 46 25)(17 55 36)(18 37 56)(19 49 38)(20 39 50)(21 51 40)(22 33 52)(23 53 34)(24 35 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,58,71)(2,72,59)(3,60,65)(4,66,61)(5,62,67)(6,68,63)(7,64,69)(8,70,57)(9,26,47)(10,48,27)(11,28,41)(12,42,29)(13,30,43)(14,44,31)(15,32,45)(16,46,25)(17,55,36)(18,37,56)(19,49,38)(20,39,50)(21,51,40)(22,33,52)(23,53,34)(24,35,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,58,71)(2,72,59)(3,60,65)(4,66,61)(5,62,67)(6,68,63)(7,64,69)(8,70,57)(9,26,47)(10,48,27)(11,28,41)(12,42,29)(13,30,43)(14,44,31)(15,32,45)(16,46,25)(17,55,36)(18,37,56)(19,49,38)(20,39,50)(21,51,40)(22,33,52)(23,53,34)(24,35,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(41,45),(42,46),(43,47),(44,48),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56)], [(1,15,24),(2,16,17),(3,9,18),(4,10,19),(5,11,20),(6,12,21),(7,13,22),(8,14,23),(25,36,59),(26,37,60),(27,38,61),(28,39,62),(29,40,63),(30,33,64),(31,34,57),(32,35,58),(41,50,67),(42,51,68),(43,52,69),(44,53,70),(45,54,71),(46,55,72),(47,56,65),(48,49,66)], [(1,58,71),(2,72,59),(3,60,65),(4,66,61),(5,62,67),(6,68,63),(7,64,69),(8,70,57),(9,26,47),(10,48,27),(11,28,41),(12,42,29),(13,30,43),(14,44,31),(15,32,45),(16,46,25),(17,55,36),(18,37,56),(19,49,38),(20,39,50),(21,51,40),(22,33,52),(23,53,34),(24,35,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 3 | 3 | 2 | 4 | 4 | 8 | 8 | 1 | 1 | 3 | 3 | 2 | 4 | 4 | 6 | 6 | 8 | 8 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | ··· | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 |
type | + | + | + | - | + | + | + | - | |||||||||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C12 | C24 | S3 | Dic3 | C3×S3 | C3⋊C8 | C3×Dic3 | C3×C3⋊C8 | A4 | C2×A4 | C4×A4 | C8×A4 | S3×A4 | Dic3×A4 | A4×C3⋊C8 |
kernel | A4×C3⋊C8 | C12×A4 | C22×C3⋊C8 | C6×A4 | C22×C12 | C3×A4 | C22×C6 | C2×C6 | C4×A4 | C2×A4 | C22×C4 | A4 | C23 | C22 | C3⋊C8 | C12 | C6 | C3 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of A4×C3⋊C8 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 64 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 65 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 |
0 | 0 | 2 | 9 | 8 |
0 | 0 | 0 | 72 | 0 |
72 | 72 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
5 | 42 | 0 | 0 | 0 |
37 | 68 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,64,1,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,65,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,64,2,0,0,0,0,9,72,0,0,0,8,0],[72,1,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,37,0,0,0,42,68,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72] >;
A4×C3⋊C8 in GAP, Magma, Sage, TeX
A_4\times C_3\rtimes C_8
% in TeX
G:=Group("A4xC3:C8");
// GroupNames label
G:=SmallGroup(288,408);
// by ID
G=gap.SmallGroup(288,408);
# by ID
G:=PCGroup([7,-2,-3,-2,-2,-2,2,-3,42,58,1271,516,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^8=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations