Copied to
clipboard

G = A4×C3⋊C8order 288 = 25·32

Direct product of A4 and C3⋊C8

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C3⋊C8, C3⋊(C8×A4), (C2×C6)⋊C24, (C3×A4)⋊3C8, C6.1(C4×A4), C4.4(S3×A4), (C4×A4).4S3, (C6×A4).3C4, C12.4(C2×A4), (C22×C6).C12, (C12×A4).6C2, C2.1(Dic3×A4), (C22×C12).2C6, (C2×A4).2Dic3, C23.3(C3×Dic3), (C22×C3⋊C8)⋊C3, C222(C3×C3⋊C8), (C22×C4).4(C3×S3), SmallGroup(288,408)

Series: Derived Chief Lower central Upper central

C1C2×C6 — A4×C3⋊C8
C1C3C2×C6C22×C6C22×C12C12×A4 — A4×C3⋊C8
C2×C6 — A4×C3⋊C8
C1C4

Generators and relations for A4×C3⋊C8
 G = < a,b,c,d,e | a2=b2=c3=d3=e8=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 178 in 58 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C23, C32, C12, C12, A4, A4, C2×C6, C2×C6, C2×C8, C22×C4, C3×C6, C3⋊C8, C3⋊C8, C24, C2×C12, C2×A4, C2×A4, C22×C6, C22×C8, C3×C12, C3×A4, C2×C3⋊C8, C4×A4, C4×A4, C22×C12, C3×C3⋊C8, C6×A4, C8×A4, C22×C3⋊C8, C12×A4, A4×C3⋊C8
Quotients: C1, C2, C3, C4, S3, C6, C8, Dic3, C12, A4, C3×S3, C3⋊C8, C24, C2×A4, C3×Dic3, C4×A4, C3×C3⋊C8, S3×A4, C8×A4, Dic3×A4, A4×C3⋊C8

Smallest permutation representation of A4×C3⋊C8
On 72 points
Generators in S72
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(41 45)(42 46)(43 47)(44 48)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)
(1 15 24)(2 16 17)(3 9 18)(4 10 19)(5 11 20)(6 12 21)(7 13 22)(8 14 23)(25 36 59)(26 37 60)(27 38 61)(28 39 62)(29 40 63)(30 33 64)(31 34 57)(32 35 58)(41 50 67)(42 51 68)(43 52 69)(44 53 70)(45 54 71)(46 55 72)(47 56 65)(48 49 66)
(1 58 71)(2 72 59)(3 60 65)(4 66 61)(5 62 67)(6 68 63)(7 64 69)(8 70 57)(9 26 47)(10 48 27)(11 28 41)(12 42 29)(13 30 43)(14 44 31)(15 32 45)(16 46 25)(17 55 36)(18 37 56)(19 49 38)(20 39 50)(21 51 40)(22 33 52)(23 53 34)(24 35 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,58,71)(2,72,59)(3,60,65)(4,66,61)(5,62,67)(6,68,63)(7,64,69)(8,70,57)(9,26,47)(10,48,27)(11,28,41)(12,42,29)(13,30,43)(14,44,31)(15,32,45)(16,46,25)(17,55,36)(18,37,56)(19,49,38)(20,39,50)(21,51,40)(22,33,52)(23,53,34)(24,35,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56), (1,15,24)(2,16,17)(3,9,18)(4,10,19)(5,11,20)(6,12,21)(7,13,22)(8,14,23)(25,36,59)(26,37,60)(27,38,61)(28,39,62)(29,40,63)(30,33,64)(31,34,57)(32,35,58)(41,50,67)(42,51,68)(43,52,69)(44,53,70)(45,54,71)(46,55,72)(47,56,65)(48,49,66), (1,58,71)(2,72,59)(3,60,65)(4,66,61)(5,62,67)(6,68,63)(7,64,69)(8,70,57)(9,26,47)(10,48,27)(11,28,41)(12,42,29)(13,30,43)(14,44,31)(15,32,45)(16,46,25)(17,55,36)(18,37,56)(19,49,38)(20,39,50)(21,51,40)(22,33,52)(23,53,34)(24,35,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(41,45),(42,46),(43,47),(44,48),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56)], [(1,15,24),(2,16,17),(3,9,18),(4,10,19),(5,11,20),(6,12,21),(7,13,22),(8,14,23),(25,36,59),(26,37,60),(27,38,61),(28,39,62),(29,40,63),(30,33,64),(31,34,57),(32,35,58),(41,50,67),(42,51,68),(43,52,69),(44,53,70),(45,54,71),(46,55,72),(47,56,65),(48,49,66)], [(1,58,71),(2,72,59),(3,60,65),(4,66,61),(5,62,67),(6,68,63),(7,64,69),(8,70,57),(9,26,47),(10,48,27),(11,28,41),(12,42,29),(13,30,43),(14,44,31),(15,32,45),(16,46,25),(17,55,36),(18,37,56),(19,49,38),(20,39,50),(21,51,40),(22,33,52),(23,53,34),(24,35,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H12A12B12C12D12E12F12G12H12I12J12K12L24A···24H
order122233333444466666668888888812121212121212121212121224···24
size113324488113324466883333999922444466888812···12

48 irreducible representations

dim111111112222223333666
type+++-+++-
imageC1C2C3C4C6C8C12C24S3Dic3C3×S3C3⋊C8C3×Dic3C3×C3⋊C8A4C2×A4C4×A4C8×A4S3×A4Dic3×A4A4×C3⋊C8
kernelA4×C3⋊C8C12×A4C22×C3⋊C8C6×A4C22×C12C3×A4C22×C6C2×C6C4×A4C2×A4C22×C4A4C23C22C3⋊C8C12C6C3C4C2C1
# reps112224481122241124112

Matrix representation of A4×C3⋊C8 in GL5(𝔽73)

10000
01000
0072640
00010
000072
,
10000
01000
0072065
000720
00001
,
10000
01000
006400
00298
000720
,
7272000
10000
00100
00010
00001
,
542000
3768000
007200
000720
000072

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,64,1,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,65,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,64,2,0,0,0,0,9,72,0,0,0,8,0],[72,1,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,37,0,0,0,42,68,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72] >;

A4×C3⋊C8 in GAP, Magma, Sage, TeX

A_4\times C_3\rtimes C_8
% in TeX

G:=Group("A4xC3:C8");
// GroupNames label

G:=SmallGroup(288,408);
// by ID

G=gap.SmallGroup(288,408);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,2,-3,42,58,1271,516,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^8=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽