Copied to
clipboard

G = A4xC24order 288 = 25·32

Direct product of C24 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4xC24, (C2xC6):2C24, C22:(C3xC24), (C22xC24):C3, C4.4(C6xA4), C6.9(C4xA4), (C22xC8):C32, (C4xA4).4C6, (C6xA4).4C4, C2.1(C12xA4), (C2xA4).2C12, (C12xA4).8C2, C12.18(C2xA4), (C22xC6).8C12, C23.2(C3xC12), (C22xC12).8C6, (C22xC4).2(C3xC6), SmallGroup(288,637)

Series: Derived Chief Lower central Upper central

C1C22 — A4xC24
C1C22C23C22xC4C22xC12C12xA4 — A4xC24
C22 — A4xC24
C1C24

Generators and relations for A4xC24
 G = < a,b,c,d | a24=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

Subgroups: 156 in 68 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2xC4, C23, C32, C12, C12, A4, C2xC6, C2xC6, C2xC8, C22xC4, C3xC6, C24, C24, C2xC12, C2xA4, C22xC6, C22xC8, C3xC12, C3xA4, C2xC24, C4xA4, C22xC12, C3xC24, C6xA4, C8xA4, C22xC24, C12xA4, A4xC24
Quotients: C1, C2, C3, C4, C6, C8, C32, C12, A4, C3xC6, C24, C2xA4, C3xC12, C3xA4, C4xA4, C3xC24, C6xA4, C8xA4, C12xA4, A4xC24

Smallest permutation representation of A4xC24
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 37)(26 38)(27 39)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(1 66 42)(2 67 43)(3 68 44)(4 69 45)(5 70 46)(6 71 47)(7 72 48)(8 49 25)(9 50 26)(10 51 27)(11 52 28)(12 53 29)(13 54 30)(14 55 31)(15 56 32)(16 57 33)(17 58 34)(18 59 35)(19 60 36)(20 61 37)(21 62 38)(22 63 39)(23 64 40)(24 65 41)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,66,42)(2,67,43)(3,68,44)(4,69,45)(5,70,46)(6,71,47)(7,72,48)(8,49,25)(9,50,26)(10,51,27)(11,52,28)(12,53,29)(13,54,30)(14,55,31)(15,56,32)(16,57,33)(17,58,34)(18,59,35)(19,60,36)(20,61,37)(21,62,38)(22,63,39)(23,64,40)(24,65,41)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (1,66,42)(2,67,43)(3,68,44)(4,69,45)(5,70,46)(6,71,47)(7,72,48)(8,49,25)(9,50,26)(10,51,27)(11,52,28)(12,53,29)(13,54,30)(14,55,31)(15,56,32)(16,57,33)(17,58,34)(18,59,35)(19,60,36)(20,61,37)(21,62,38)(22,63,39)(23,64,40)(24,65,41) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,37),(26,38),(27,39),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(1,66,42),(2,67,43),(3,68,44),(4,69,45),(5,70,46),(6,71,47),(7,72,48),(8,49,25),(9,50,26),(10,51,27),(11,52,28),(12,53,29),(13,54,30),(14,55,31),(15,56,32),(16,57,33),(17,58,34),(18,59,35),(19,60,36),(20,61,37),(21,62,38),(22,63,39),(23,64,40),(24,65,41)]])

96 conjugacy classes

class 1 2A2B2C3A3B3C···3H4A4B4C4D6A6B6C6D6E6F6G···6L8A8B8C8D8E8F8G8H12A12B12C12D12E12F12G12H12I···12T24A···24H24I···24P24Q···24AN
order1222333···344446666666···688888888121212121212121212···1224···2424···2424···24
size1133114···411331133334···411113333111133334···41···13···34···4

96 irreducible representations

dim11111111111133333333
type++++
imageC1C2C3C3C4C6C6C8C12C12C24C24A4C2xA4C3xA4C4xA4C6xA4C8xA4C12xA4A4xC24
kernelA4xC24C12xA4C8xA4C22xC24C6xA4C4xA4C22xC12C3xA4C2xA4C22xC6A4C2xC6C24C12C8C6C4C3C2C1
# reps1162262412424811222448

Matrix representation of A4xC24 in GL4(F73) generated by

17000
06300
00630
00063
,
1000
016468
00720
00072
,
1000
07205
00720
0001
,
8000
0682217
0001
07195
G:=sub<GL(4,GF(73))| [17,0,0,0,0,63,0,0,0,0,63,0,0,0,0,63],[1,0,0,0,0,1,0,0,0,64,72,0,0,68,0,72],[1,0,0,0,0,72,0,0,0,0,72,0,0,5,0,1],[8,0,0,0,0,68,0,71,0,22,0,9,0,17,1,5] >;

A4xC24 in GAP, Magma, Sage, TeX

A_4\times C_{24}
% in TeX

G:=Group("A4xC24");
// GroupNames label

G:=SmallGroup(288,637);
// by ID

G=gap.SmallGroup(288,637);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,-2,-2,2,126,80,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^24=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<