Extensions 1→N→G→Q→1 with N=S3×Dic6 and Q=C2

Direct product G=N×Q with N=S3×Dic6 and Q=C2
dρLabelID
C2×S3×Dic696C2xS3xDic6288,942

Semidirect products G=N:Q with N=S3×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic6)⋊1C2 = S3×C24⋊C2φ: C2/C1C2 ⊆ Out S3×Dic6484(S3xDic6):1C2288,440
(S3×Dic6)⋊2C2 = C24.3D6φ: C2/C1C2 ⊆ Out S3×Dic6964-(S3xDic6):2C2288,448
(S3×Dic6)⋊3C2 = Dic12⋊S3φ: C2/C1C2 ⊆ Out S3×Dic6484(S3xDic6):3C2288,449
(S3×Dic6)⋊4C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):4C2288,576
(S3×Dic6)⋊5C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):5C2288,577
(S3×Dic6)⋊6C2 = D12.11D6φ: C2/C1C2 ⊆ Out S3×Dic6968-(S3xDic6):6C2288,591
(S3×Dic6)⋊7C2 = D12.33D6φ: C2/C1C2 ⊆ Out S3×Dic6484(S3xDic6):7C2288,945
(S3×Dic6)⋊8C2 = D12.34D6φ: C2/C1C2 ⊆ Out S3×Dic6484-(S3xDic6):8C2288,946
(S3×Dic6)⋊9C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):9C2288,957
(S3×Dic6)⋊10C2 = S3×D42S3φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):10C2288,959
(S3×Dic6)⋊11C2 = D12.25D6φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):11C2288,963
(S3×Dic6)⋊12C2 = S32×Q8φ: C2/C1C2 ⊆ Out S3×Dic6488-(S3xDic6):12C2288,965
(S3×Dic6)⋊13C2 = S3×C4○D12φ: trivial image484(S3xDic6):13C2288,953

Non-split extensions G=N.Q with N=S3×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic6).1C2 = S3×Dic12φ: C2/C1C2 ⊆ Out S3×Dic6964-(S3xDic6).1C2288,447
(S3×Dic6).2C2 = S3×C3⋊Q16φ: C2/C1C2 ⊆ Out S3×Dic6968-(S3xDic6).2C2288,590

׿
×
𝔽