Copied to
clipboard

G = S3xDic6order 144 = 24·32

Direct product of S3 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: S3xDic6, D6.7D6, C12.20D6, Dic3.5D6, C4.5S32, (C3xS3):Q8, C3:2(S3xQ8), (C4xS3).1S3, C32:2(C2xQ8), C3:1(C2xDic6), (S3xDic3).C2, (S3xC12).2C2, (C3xDic6):4C2, C32:2Q8:2C2, (C3xC6).1C23, C6.1(C22xS3), C32:4Q8:4C2, (S3xC6).5C22, (C3xC12).16C22, C3:Dic3.4C22, (C3xDic3).1C22, C2.4(C2xS32), SmallGroup(144,137)

Series: Derived Chief Lower central Upper central

C1C3xC6 — S3xDic6
C1C3C32C3xC6S3xC6S3xDic3 — S3xDic6
C32C3xC6 — S3xDic6
C1C2C4

Generators and relations for S3xDic6
 G = < a,b,c,d | a3=b2=c12=1, d2=c6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 228 in 82 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, Q8, C32, Dic3, Dic3, Dic3, C12, C12, D6, C2xC6, C2xQ8, C3xS3, C3xC6, Dic6, Dic6, C4xS3, C4xS3, C2xDic3, C2xC12, C3xQ8, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, C2xDic6, S3xQ8, S3xDic3, C32:2Q8, C3xDic6, S3xC12, C32:4Q8, S3xDic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, Dic6, C22xS3, S32, C2xDic6, S3xQ8, C2xS32, S3xDic6

Character table of S3xDic6

 class 12A2B2C3A3B3C4A4B4C4D4E4F6A6B6C6D6E12A12B12C12D12E12F12G12H12I
 size 1133224266618182246622444661212
ρ1111111111111111111111111111    trivial
ρ211111111-1-11-1-1111111111111-1-1    linear of order 2
ρ31111111-11-1-1-1111111-1-1-1-1-1-1-1-11    linear of order 2
ρ41111111-1-11-11-111111-1-1-1-1-1-1-11-1    linear of order 2
ρ511-1-1111111-1-1-1111-1-111111-1-111    linear of order 2
ρ611-1-11111-1-1-111111-1-111111-1-1-1-1    linear of order 2
ρ711-1-1111-11-111-1111-1-1-1-1-1-1-111-11    linear of order 2
ρ811-1-1111-1-111-11111-1-1-1-1-1-1-1111-1    linear of order 2
ρ92200-12-12220002-1-10022-1-1-100-1-1    orthogonal lifted from S3
ρ1022222-1-1-200-200-12-1-1-111-2111100    orthogonal lifted from D6
ρ112200-12-12-2-20002-1-10022-1-1-10011    orthogonal lifted from D6
ρ1222-2-22-1-1200-200-12-111-1-12-1-11100    orthogonal lifted from D6
ρ132200-12-1-22-20002-1-100-2-2111001-1    orthogonal lifted from D6
ρ1422222-1-1200200-12-1-1-1-1-12-1-1-1-100    orthogonal lifted from S3
ρ1522-2-22-1-1-200200-12-11111-211-1-100    orthogonal lifted from D6
ρ162200-12-1-2-220002-1-100-2-211100-11    orthogonal lifted from D6
ρ172-2-22222000000-2-2-2-22000000000    symplectic lifted from Q8, Schur index 2
ρ182-22-2222000000-2-2-22-2000000000    symplectic lifted from Q8, Schur index 2
ρ192-2-222-1-10000001-211-13-30-33-3300    symplectic lifted from Dic6, Schur index 2
ρ202-2-222-1-10000001-211-1-3303-33-300    symplectic lifted from Dic6, Schur index 2
ρ212-22-22-1-10000001-21-113-30-333-300    symplectic lifted from Dic6, Schur index 2
ρ222-22-22-1-10000001-21-11-3303-3-3300    symplectic lifted from Dic6, Schur index 2
ρ234400-2-21-400000-2-2100222-1-10000    orthogonal lifted from C2xS32
ρ244400-2-21400000-2-2100-2-2-2110000    orthogonal lifted from S32
ρ254-400-24-2000000-42200000000000    symplectic lifted from S3xQ8, Schur index 2
ρ264-400-2-2100000022-100-23230-330000    symplectic faithful, Schur index 2
ρ274-400-2-2100000022-10023-2303-30000    symplectic faithful, Schur index 2

Smallest permutation representation of S3xDic6
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 7 20)(2 13 8 19)(3 24 9 18)(4 23 10 17)(5 22 11 16)(6 21 12 15)(25 43 31 37)(26 42 32 48)(27 41 33 47)(28 40 34 46)(29 39 35 45)(30 38 36 44)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,13,8,19)(3,24,9,18)(4,23,10,17)(5,22,11,16)(6,21,12,15)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,13,8,19)(3,24,9,18)(4,23,10,17)(5,22,11,16)(6,21,12,15)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,7,20),(2,13,8,19),(3,24,9,18),(4,23,10,17),(5,22,11,16),(6,21,12,15),(25,43,31,37),(26,42,32,48),(27,41,33,47),(28,40,34,46),(29,39,35,45),(30,38,36,44)]])

S3xDic6 is a maximal subgroup of
C24.3D6  Dic12:S3  Dic6.19D6  D12.11D6  D12.33D6  D12.34D6  Dic6.24D6  D12.25D6  S32xQ8  C3:S3:Dic6  C12.85S32  C33:5(C2xQ8)  C3:S3:4Dic6
S3xDic6 is a maximal quotient of
Dic3:5Dic6  C62.9C23  C62.10C23  Dic3:6Dic6  Dic3.Dic6  C62.16C23  D6:Dic6  D6:6Dic6  D6:7Dic6  Dic3:Dic6  C62.37C23  D6:1Dic6  D6:2Dic6  D6:3Dic6  D6:4Dic6  C12:3Dic6  C3:S3:Dic6  C33:5(C2xQ8)  C3:S3:4Dic6

Matrix representation of S3xDic6 in GL6(F13)

100000
010000
0012100
0012000
000010
000001
,
1200000
0120000
0001200
0012000
000010
000001
,
500000
080000
0012000
0001200
0000012
0000112
,
010000
1200000
001000
000100
000001
000010

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

S3xDic6 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_6
% in TeX

G:=Group("S3xDic6");
// GroupNames label

G:=SmallGroup(144,137);
// by ID

G=gap.SmallGroup(144,137);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,116,50,490,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^12=1,d^2=c^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of S3xDic6 in TeX

׿
x
:
Z
F
o
wr
Q
<