direct product, metabelian, supersoluble, monomial
Aliases: S3×Dic6, D6.7D6, C12.20D6, Dic3.5D6, C4.5S32, (C3×S3)⋊Q8, C3⋊2(S3×Q8), (C4×S3).1S3, C32⋊2(C2×Q8), C3⋊1(C2×Dic6), (S3×Dic3).C2, (S3×C12).2C2, (C3×Dic6)⋊4C2, C32⋊2Q8⋊2C2, (C3×C6).1C23, C6.1(C22×S3), C32⋊4Q8⋊4C2, (S3×C6).5C22, (C3×C12).16C22, C3⋊Dic3.4C22, (C3×Dic3).1C22, C2.4(C2×S32), SmallGroup(144,137)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×Dic6
G = < a,b,c,d | a3=b2=c12=1, d2=c6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 228 in 82 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2 [×2], C3 [×2], C3, C4, C4 [×5], C22, S3 [×2], C6 [×2], C6 [×3], C2×C4 [×3], Q8 [×4], C32, Dic3, Dic3 [×2], Dic3 [×6], C12 [×2], C12 [×4], D6, C2×C6, C2×Q8, C3×S3 [×2], C3×C6, Dic6, Dic6 [×7], C4×S3, C4×S3 [×2], C2×Dic3 [×2], C2×C12, C3×Q8, C3×Dic3, C3×Dic3 [×2], C3⋊Dic3 [×2], C3×C12, S3×C6, C2×Dic6, S3×Q8, S3×Dic3 [×2], C32⋊2Q8 [×2], C3×Dic6, S3×C12, C32⋊4Q8, S3×Dic6
Quotients: C1, C2 [×7], C22 [×7], S3 [×2], Q8 [×2], C23, D6 [×6], C2×Q8, Dic6 [×2], C22×S3 [×2], S32, C2×Dic6, S3×Q8, C2×S32, S3×Dic6
Character table of S3×Dic6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | |
size | 1 | 1 | 3 | 3 | 2 | 2 | 4 | 2 | 6 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -2 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | 2 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -1 | -1 | -2 | 0 | 0 | 2 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 1 | 1 | -2 | 1 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | -1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -1 | √3 | -√3 | 0 | -√3 | √3 | -√3 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -1 | -√3 | √3 | 0 | √3 | -√3 | √3 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 1 | √3 | -√3 | 0 | -√3 | √3 | √3 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 1 | -√3 | √3 | 0 | √3 | -√3 | -√3 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ23 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ24 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ25 | 4 | -4 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | -2√3 | 2√3 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 2√3 | -2√3 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 23 7 17)(2 22 8 16)(3 21 9 15)(4 20 10 14)(5 19 11 13)(6 18 12 24)(25 41 31 47)(26 40 32 46)(27 39 33 45)(28 38 34 44)(29 37 35 43)(30 48 36 42)
G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,41,31,47)(26,40,32,46)(27,39,33,45)(28,38,34,44)(29,37,35,43)(30,48,36,42)>;
G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23,7,17)(2,22,8,16)(3,21,9,15)(4,20,10,14)(5,19,11,13)(6,18,12,24)(25,41,31,47)(26,40,32,46)(27,39,33,45)(28,38,34,44)(29,37,35,43)(30,48,36,42) );
G=PermutationGroup([(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,23,7,17),(2,22,8,16),(3,21,9,15),(4,20,10,14),(5,19,11,13),(6,18,12,24),(25,41,31,47),(26,40,32,46),(27,39,33,45),(28,38,34,44),(29,37,35,43),(30,48,36,42)])
S3×Dic6 is a maximal subgroup of
C24.3D6 Dic12⋊S3 Dic6.19D6 D12.11D6 D12.33D6 D12.34D6 Dic6.24D6 D12.25D6 S32×Q8 C3⋊S3⋊Dic6 C12.85S32 C33⋊5(C2×Q8) C3⋊S3⋊4Dic6
S3×Dic6 is a maximal quotient of
Dic3⋊5Dic6 C62.9C23 C62.10C23 Dic3⋊6Dic6 Dic3.Dic6 C62.16C23 D6⋊Dic6 D6⋊6Dic6 D6⋊7Dic6 Dic3⋊Dic6 C62.37C23 D6⋊1Dic6 D6⋊2Dic6 D6⋊3Dic6 D6⋊4Dic6 C12⋊3Dic6 C3⋊S3⋊Dic6 C33⋊5(C2×Q8) C3⋊S3⋊4Dic6
Matrix representation of S3×Dic6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
S3×Dic6 in GAP, Magma, Sage, TeX
S_3\times {\rm Dic}_6
% in TeX
G:=Group("S3xDic6");
// GroupNames label
G:=SmallGroup(144,137);
// by ID
G=gap.SmallGroup(144,137);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^12=1,d^2=c^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export