Copied to
clipboard

G = C2xS3xDic6order 288 = 25·32

Direct product of C2, S3 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: C2xS3xDic6, C62.126C23, C6:2(S3xQ8), (S3xC6):11Q8, C6:1(C2xDic6), (C4xS3).39D6, C6.1(S3xC23), (C3xC6).1C24, (C6xDic6):17C2, (C2xC12).284D6, C32:2(C22xQ8), C3:1(C22xDic6), (S3xC6).19C23, (C2xDic3).86D6, D6.24(C22xS3), (C22xS3).78D6, C32:2Q8:9C22, (S3xC12).53C22, (C3xC12).110C23, (C6xC12).156C22, C12.129(C22xS3), (C3xDic6):24C22, C3:Dic3.13C23, (C3xDic3).1C23, (S3xDic3).5C22, C32:4Q8:19C22, (C6xDic3).43C22, Dic3.18(C22xS3), C3:2(C2xS3xQ8), C4.59(C2xS32), (C2xC4).85S32, (S3xC2xC4).6S3, (C3xC6):2(C2xQ8), (C3xS3):1(C2xQ8), C2.4(C22xS32), (S3xC2xC12).14C2, C22.58(C2xS32), (C2xS3xDic3).4C2, (C2xC32:2Q8):14C2, (S3xC2xC6).102C22, (C2xC32:4Q8):18C2, (C2xC6).145(C22xS3), (C2xC3:Dic3).101C22, SmallGroup(288,942)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C2xS3xDic6
C1C3C32C3xC6S3xC6S3xDic3C2xS3xDic3 — C2xS3xDic6
C32C3xC6 — C2xS3xDic6
C1C22C2xC4

Generators and relations for C2xS3xDic6
 G = < a,b,c,d,e | a2=b3=c2=d12=1, e2=d6, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 994 in 331 conjugacy classes, 132 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C22xC4, C2xQ8, C3xS3, C3xC6, C3xC6, Dic6, Dic6, C4xS3, C4xS3, C2xDic3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22xC6, C22xQ8, C3xDic3, C3:Dic3, C3xC12, S3xC6, C62, C2xDic6, C2xDic6, S3xC2xC4, S3xC2xC4, S3xQ8, C22xDic3, C22xC12, C6xQ8, S3xDic3, C32:2Q8, C3xDic6, S3xC12, C6xDic3, C6xDic3, C32:4Q8, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xDic6, C2xS3xQ8, S3xDic6, C2xS3xDic3, C2xC32:2Q8, C6xDic6, S3xC2xC12, C2xC32:4Q8, C2xS3xDic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C24, Dic6, C22xS3, C22xQ8, S32, C2xDic6, S3xQ8, S3xC23, C2xS32, C22xDic6, C2xS3xQ8, S3xDic6, C22xS32, C2xS3xDic6

Smallest permutation representation of C2xS3xDic6
On 96 points
Generators in S96
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 25)(11 26)(12 27)(13 86)(14 87)(15 88)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(23 96)(24 85)(37 53)(38 54)(39 55)(40 56)(41 57)(42 58)(43 59)(44 60)(45 49)(46 50)(47 51)(48 52)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(71 73)(72 74)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)(49 57 53)(50 58 54)(51 59 55)(52 60 56)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 81 77)(74 82 78)(75 83 79)(76 84 80)(85 89 93)(86 90 94)(87 91 95)(88 92 96)
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 37)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 73)(33 74)(34 75)(35 76)(36 77)(49 93)(50 94)(51 95)(52 96)(53 85)(54 86)(55 87)(56 88)(57 89)(58 90)(59 91)(60 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 51 7 57)(2 50 8 56)(3 49 9 55)(4 60 10 54)(5 59 11 53)(6 58 12 52)(13 84 19 78)(14 83 20 77)(15 82 21 76)(16 81 22 75)(17 80 23 74)(18 79 24 73)(25 38 31 44)(26 37 32 43)(27 48 33 42)(28 47 34 41)(29 46 35 40)(30 45 36 39)(61 89 67 95)(62 88 68 94)(63 87 69 93)(64 86 70 92)(65 85 71 91)(66 96 72 90)

G:=sub<Sym(96)| (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,49)(46,50)(47,51)(48,52)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(71,73)(72,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,73)(33,74)(34,75)(35,76)(36,77)(49,93)(50,94)(51,95)(52,96)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,7,57)(2,50,8,56)(3,49,9,55)(4,60,10,54)(5,59,11,53)(6,58,12,52)(13,84,19,78)(14,83,20,77)(15,82,21,76)(16,81,22,75)(17,80,23,74)(18,79,24,73)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39)(61,89,67,95)(62,88,68,94)(63,87,69,93)(64,86,70,92)(65,85,71,91)(66,96,72,90)>;

G:=Group( (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,49)(46,50)(47,51)(48,52)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(71,73)(72,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,73)(33,74)(34,75)(35,76)(36,77)(49,93)(50,94)(51,95)(52,96)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,91)(60,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51,7,57)(2,50,8,56)(3,49,9,55)(4,60,10,54)(5,59,11,53)(6,58,12,52)(13,84,19,78)(14,83,20,77)(15,82,21,76)(16,81,22,75)(17,80,23,74)(18,79,24,73)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39)(61,89,67,95)(62,88,68,94)(63,87,69,93)(64,86,70,92)(65,85,71,91)(66,96,72,90) );

G=PermutationGroup([[(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,25),(11,26),(12,27),(13,86),(14,87),(15,88),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(23,96),(24,85),(37,53),(38,54),(39,55),(40,56),(41,57),(42,58),(43,59),(44,60),(45,49),(46,50),(47,51),(48,52),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(71,73),(72,74)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44),(49,57,53),(50,58,54),(51,59,55),(52,60,56),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,81,77),(74,82,78),(75,83,79),(76,84,80),(85,89,93),(86,90,94),(87,91,95),(88,92,96)], [(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,37),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,73),(33,74),(34,75),(35,76),(36,77),(49,93),(50,94),(51,95),(52,96),(53,85),(54,86),(55,87),(56,88),(57,89),(58,90),(59,91),(60,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,51,7,57),(2,50,8,56),(3,49,9,55),(4,60,10,54),(5,59,11,53),(6,58,12,52),(13,84,19,78),(14,83,20,77),(15,82,21,76),(16,81,22,75),(17,80,23,74),(18,79,24,73),(25,38,31,44),(26,37,32,43),(27,48,33,42),(28,47,34,41),(29,46,35,40),(30,45,36,39),(61,89,67,95),(62,88,68,94),(63,87,69,93),(64,86,70,92),(65,85,71,91),(66,96,72,90)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C···4H4I4J4K4L6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order12222222333444···444446···666666661212121212···121212121212121212
size11113333224226···6181818182···2444666622224···4666612121212

54 irreducible representations

dim111111122222222244444
type+++++++++-+++++-+-++-
imageC1C2C2C2C2C2C2S3S3Q8D6D6D6D6D6Dic6S32S3xQ8C2xS32C2xS32S3xDic6
kernelC2xS3xDic6S3xDic6C2xS3xDic3C2xC32:2Q8C6xDic6S3xC2xC12C2xC32:4Q8C2xDic6S3xC2xC4S3xC6Dic6C4xS3C2xDic3C2xC12C22xS3D6C2xC4C6C4C22C2
# reps182211111444321812214

Matrix representation of C2xS3xDic6 in GL6(F13)

1200000
0120000
0012000
0001200
000010
000001
,
100000
010000
000100
00121200
000010
000001
,
100000
010000
0012000
001100
000010
000001
,
12110000
110000
001000
000100
00001212
000010
,
650000
370000
0012000
0001200
000010
00001212

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,1,0,0,0,0,11,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[6,3,0,0,0,0,5,7,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

C2xS3xDic6 in GAP, Magma, Sage, TeX

C_2\times S_3\times {\rm Dic}_6
% in TeX

G:=Group("C2xS3xDic6");
// GroupNames label

G:=SmallGroup(288,942);
// by ID

G=gap.SmallGroup(288,942);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^12=1,e^2=d^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<