Extensions 1→N→G→Q→1 with N=C3 and Q=D126C22

Direct product G=N×Q with N=C3 and Q=D126C22

Semidirect products G=N:Q with N=C3 and Q=D126C22
extensionφ:Q→Aut NdρLabelID
C31(D126C22) = D12.28D6φ: D126C22/C4.Dic3C2 ⊆ Aut C3484C3:1(D12:6C2^2)288,478
C32(D126C22) = D129D6φ: D126C22/D4⋊S3C2 ⊆ Aut C3488-C3:2(D12:6C2^2)288,580
C33(D126C22) = D12.7D6φ: D126C22/D4.S3C2 ⊆ Aut C3488+C3:3(D12:6C2^2)288,582
C34(D126C22) = D1220D6φ: D126C22/C4○D12C2 ⊆ Aut C3484C3:4(D12:6C2^2)288,471
C35(D126C22) = C62.131D4φ: D126C22/C6×D4C2 ⊆ Aut C372C3:5(D12:6C2^2)288,789

Non-split extensions G=N.Q with N=C3 and Q=D126C22
extensionφ:Q→Aut NdρLabelID
C3.(D126C22) = D366C22φ: D126C22/C6×D4C2 ⊆ Aut C3724C3.(D12:6C2^2)288,143